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Abstract 

In order to improve predictions of flow behavior in numerous applications there is a 

great need to understand the physics of three-dimensional turbulent boundary layers, 

dominated by near-wall behavior. To that end, an experiment was performed to 

measure near-wall velocity and Reynolds stress profiles in a pressure-driven three- 

dimensional turbulent boundary layer. The flow was achieved by placing a 30° wedge 

in a straight duct in a wind tunnel, with additional pressure gradient control above the 

test surface. An initially two-dimensional boundary layer (Ree « 4000) was exposed 

to a strong spanwise pressure gradient. At the furthest downstream measurement 

locations there was also a fairly strong favorable pressure gradient. 

Measurements were made using a specially-designed near-wall laser Doppler ane- 

mometer (LDA), in addition to conventional methods. The LDA used short focal 

length optics, a mirror probe suspended in the flow, and side-scatter collection to 

achieve a nearly spherical measuring volume approximately 35^m in diameter. Good 

agreement with previous two-dimensional boundary layer data was achieved. 

The three-dimensional turbulent boundary layer data presented include mean ve- 

locity measurements and Reynolds stresses, all extending well below y+ = 10, at 

several profile locations. Terms of the Reynolds stress transport equations are calcu- 

lated at two profile locations. The mean flow is nearly collateral at the wall. Turbu- 

lent kinetic energy is mildly suppressed in the near-wall region and the shear stress 

components are strongly affected by three-dimensionality. As a result, the ratio of 

shear stress to turbulent kinetic energy is suppressed throughout most of the bound- 

ary layer. The angles of stress and strain are misaligned, except very near the wall 

(around y+ = 10) where the angles nearly coincide with the mean flow angle. Three- 

dimensionality appears to reduce the production of turbulent kinetic energy and, 

more strongly, the production of —u'v'. A transport equation for a\ is derived, and 

we find a dramatic decrease in the production of ai, balanced by a decrease in the 

pressure-strain term. 

ni 
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Nomenclature 

Roman Symbols 

a\ turbulence structure parameter: a\ =      B   a    ^— 

Cf skin friction coefficient 

cß constant in k — e model 

d measuring volume diameter 

T>ij viscous dissipation term in Reynolds stress transport equations 

V homogeneous dissipation rate 

EQ
2 calibration constant for hotwire anemometry 

/ lens focal length, or: 

/ frequency 

/ßragg Bragg cell driver frequency 
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Jijk turbulent transport term in Reynolds stress transport equations 

k turbulent kinetic energy per unit mass: k = l/2uj«(-, or: 
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n exponent for hotwire anemometry 
_       ra pan wise 

"T., 
N,Ne eddy viscosity ratios: N = 

p pressure 

Vij production term in Reynolds stress transport equations 

Q mean velocity magnitude in the plane of the wall: Q2 = U2 + W2 

q2 twice the turbulent kinetic energy: q2 = «JitJ 

R, S parameters in three-hole probe calibration 

Rth thermistor resistance 

Re Reynolds number 

t time 

T temperature 
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u velocity 

ur friction velocity 

u',v',w' fluctuating velocity components 

U mean streamwise velocity in tunnel coordinates 

Ue freestream velocity 

Us mean streamwise velocity in freestream streamline coordinates 

Un mean spanwise velocity in freestream streamline coordinates 

V mean wall-normal velocity in tunnel coordinates 

W mean spanwise velocity in tunnel coordinates 

x, y, z streamwise, wall-normal, spanwise axes 

y+ nondimensional distance from wall: y+ = yuT/v 

Greek Symbols 

a laser beam crossing angle at measuring volume 

ß Bragg angle, or: 

ß freestream turning angle with respect to z-axis 

7 flow angle with respect to tunnel coordinates 

7a velocity gradient angle: 75 = tan"1 (^/g) 

7T shear stress angle 

6* boundary layer displacement thickness 

699 boundary layer thickness 

6 boundary layer momentum thickness 

K constant in law of the wall equation; K = 0.41 

A wavelength 

A fringe spacing 

fj, absolute viscosity 

v kinematic viscosity 

vT eddy viscosity 

p fluid density 
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a standard deviation 

r shear stress 

cf> grazing beam angle for LDA 

$,j pressure-strain redistribution term in Reynolds stress transport equations 

\& wire angle for X-array hotwire 



Chapter 1 

Introduction 

Three-dimensional turbulent boundary layers exist in nearly every wall-bounded tur- 

bulent flow of interest, but they are surprisingly poorly understood. Calculation 

methods for three-dimensional turbulent boundary layers use empirical constants de- 

rived from two-dimensional flows, because there is not sufficient information available 

to properly model the three-dimensional cases. A better understanding of the physics 

of three-dimensional boundary layers would provide the means to better predict flows 

in turbomachinery, aerodynamics, and environmental fluid applications. Although 

recent advances have been made in the understanding of three-dimensional turbulent 

boundary layers, a gap remains in near-wall data. Very near the wall, the turbulence 

production in the boundary layer is strongest, and the near-wall region accounts for 

the majority of the boundary layer displacement thickness. However, there have been 

only a few experiments in which measurements extend into the near-wall region. The 

aims of the present work are to develop techniques and to provide new measurements 

which will help us understand the near-wall region of three-dimensional turbulent 

boundary layers in considerably more detail than was previously possible. 

1.1   Three-dimensional boundary layer background 

When a flow has curving streamlines that lie in a plane parallel to a wall, the shear 

layer adjacent to the wall is a three-dimensional boundary layer. Simple examples of 

three-dimensional turbulent boundary layer flows include the flow on the end wall of 

a curved duct of rectangular cross-section, flow over a skewed aircraft wing, and a 

boundary layer approaching a three-dimensional obstacle. See figure 1.1 for examples 

of three-dimensional turbulent boundary layer geometries. Streamline curvature in 

these cases is caused by pressure gradients normal to the streamline.  The fluid in 



the boundary layer is acted upon by viscosity and turbulent stresses in addition to 

the pressure field. The slow-moving fluid in the boundary layer reacts to a spanwise 

pressure gradient by turning more strongly than the fluid outside the boundary layer. 

Looking at the boundary layer in coordinates aligned with the local free-stream veloc- 

ity, we see a crossflow velocity component Un which varies continually throughout the 

boundary layer, as shown in figure 1.2. The Un component, like the Us component, 

is zero at the wall due to the no-slip boundary condition. Un increases rapidly to a 

maximum which occurs close to the wall. We may expect that the crossflow has its 

strongest effect in this region, and we refer to y+ < 100 as the near-wall region. 

Three-dimensional turbulent boundary layers may also be formed by shearing. A 

simple example of a shear-driven three-dimensional turbulent boundary layer is an 

initially two-dimensional boundary layer which encounters a section of the wall which 

is moving normal to the freestream flow direction. We will not discuss this type of 

flow in great detail. 

1.1.1   Governing equations 

Here we describe the basic equations which apply to three-dimensional boundary 

layers, in order to introduce some terminology and to explain the terms that must 

be measured. The Navier-Stokes equations describing an incompressible flow of a 

Newtonian fluid with constant density and viscosity, are: 

dui        dui        1 dp        d2Ui . 
-Zr + Uj-z— = —-z— + l/-z  I1-1) at        oxj       pox,      oxjXj 

Together with the continuity equation |^f = 0 the flow is completely described. 

We apply the Reynolds decomposition, splitting velocity components into mean 

(Ui) and fluctuating (tij) parts and then time-averaging to yield the mean momentum 

equations:1 

TT dUi        1 dp       d   ( dUi    -r-Ä 

JWe break pressure into mean and fluctuating terms also, but choose to use lower case p to 
represent time-averaged pressure from this point forward. 
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The quantity —uJ'Uj is grouped with the stress term ^fjjfs It is considered an effective 

stress caused by the turbulence, and is called the Reynolds stress tensor. Dimen- 

sionally, the stress is — pu\u'j but we will refer to — u'{u'j as a stress per unit volume. 

The set of equations for mean velocity is not closed, since introducing the Reynolds 

stresses adds six additional unknowns. Transport equations for the Reynolds stresses 

may be derived (see chapter 6) but these transport equations introduce yet more un- 

known quantities, including triple products (i.e., u\u'ju'k) and terms involving pressure 

fluctuation correlations. 

We next apply "thin shear layer" assumptions. For three-dimensional boundary 

layers these assumptions are that V is small compared to both U and W and that 

wall-normal derivatives are large compared to streamwise and spanwise derivatives. 

Doing this yields the following momentum equations for the mean velocities U and 

W in a three-dimensional boundary layer: 

U—     V—     W— - --^     - — ( — -  ~rA (1 3) 
dx        dy dz        pdx     pdy \   dy J 

dW       dW        dW _ _ 1 dp    ld_( dW _ —^ 
dx dy dz pdzpdy\dy ) 

Thus, we see that prediction of the quantities — u'v' and —v'w' is critical to the 

prediction of the mean velocity field in a three-dimensional boundary layer. Many 

models reduce the Reynolds stress tensor into normal stresses and a shear stress 

"vector".  The shear stress is defined by its x and z components, u'v' and v'w'; its 

magnitude r/p and angle *yT are 

T/P  =   (^V2 + ^72)1/2; (1-5) 

^T   =   tan'1 (—v'w'/ — u'v'). (1.6) 

The rate of strain angle, similarly, is defined as 

7'=<" U7*) (L7) 



1.1.2   Differences from 2D 

Two-dimensional turbulent boundary layers have been studied for many years now 

(a classic text is that of Schlichting (I960)) and are for the most part well understood. 

We can predict with reasonable accuracy the mean flow in a two-dimensional turbu- 

lent boundary layer using well-tested correlations and models, even in the presence 

of transpiration, streamwise pressure gradient, or wall curvature. However, these 

correlations fail when the streamlines curve relative to the wall. 

A simple closure model for equation 1.3 for two-dimensional boundary layers is to 

let ÜV scale on |p. This is known as an eddy viscosity model. Scalar eddy viscosity 

models do not work for three-dimensional turbulent boundary layers since the vector 

defined by the quantities u'v' and v'w' is usually misaligned with the vector defined 

by the quantities |p and ^p; that is, 7T ^ 7fl. We will discuss refinements to the 

eddy viscosity model later in this chapter. 

Arguments can be made to scale the magnitude of the Reynolds shear stresses 

on the turbulent kinetic energy. (See Bradshaw (1967), or Nash and Patel (1972) 

for reasoning.) The ratio of shear stress to twice the turbulent kinetic energy — the 

ai parameter — has been found to be consistently around 0.15 for two-dimensional 

boundary layers in the absence of strong pressure gradients. For a three-dimensional 

turbulent boundary layer, a\ is defined as: 

I u'v'  + v'w' I 
fll = 

V—    —    -L (1.8) 
u12 + vn + w'2 

Experiments in three-dimensional turbulent boundary layers have found that the ax 

parameter is not constant, and is usually well below the standard value of 0.15. 

Another critical difference between two- and three- dimensional turbulent bound- 

ary layers is perhaps obvious but worth mentioning. At any particular (x, z) location 

in a three-dimensional turbulent boundary layer, the mean streamline is turning as 

a function of distance from the wall. The implication which is often neglected is 

that the fluid which comprises this profile has experienced a broad range of pressure 

gradient histories — the domain of influence for each (x, z) position is therefore much 

broader than for any given location in a two-dimensional boundary layer. 
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1.2   Previous experiments 

We review the existing literature on three-dimensional turbulent boundary layer 

experiments, beginning with the early experiments. Our discussion is roughly chrono- 

logical, pointing out the most significant studies. 

1.2.1   Early experiments 

Johnston (1960) performed an experiment on the boundary layer caused by a two- 

dimensional jet impinging on an end wall. He claimed to present the third reasonably 

complete and accurate experiment in three-dimensional turbulent boundary layers, 

after Gruschwitz in 1935 and Kuethe et d. in 1949. He introduced a model of a 

universal crossflow (W) boundary layer profile, which seemed appropriate to the three 

data sets available. Central to this model was that the velocity below the location of 

peak crossflow was considered to be collateral; i.e. W = e * U. 

By the mid-1970's, three-dimensional turbulent boundary layers had been studied 

in more detail, and we use as a starting point Johnston's (1976) review of three- 

dimensional turbulent boundary layer experiments, which discusses the early exper- 

iments in the field as well as the state of the art of experimental methods in three- 

dimensional boundary layers at that time. By the time of Johnston's writing, there 

were nine three-dimensional turbulent boundary layer experiments which included 

detailed Reynolds stress measurements. The geometries of these experiments varied 

broadly, and there were only a few qualitative points on which they agreed. He con- 

cluded that there was no hope of finding a universal crossflow profile. He noted the 

discrepancy between the angles of turbulent shear stress and mean strain rate, and 

mapped out N, an anisotropic eddy viscosity ratio. 

He noted that flows with strong skewing seemed to have lower values of N than "near- 

equilibrium" flows, but demonstrated that this ratio is not constant, as it ranges 

widely within and across experiments. The experiments demonstrated various re- 

lations between the shear stress angle and the strain rate angle.   Some showed jT 



lagging 7fl, while others showed the opposite. A continual theme in Johnston's review 

is that history effects are critical in three-dimensional turbulent boundary layers. He 

also pointed out that as of 1976, in the region y+ < 100 mean velocity data were rare 

and turbulence data were nonexistent. 

Among these early experiments, the study by Bradshaw and Terrell (1969) is note- 

worthy in that it was the first three-dimensional turbulent boundary layer study to 

include all the Reynolds stresses. Bradshaw and Terrell studied the relaxing three- 

dimensional turbulent boundary layer on an "infinite" swept wing. The term "infi- 

nite" implies that end effects are minimal, so that the flow depends only on two coor- 

dinates. Flows of this sort should be easier to calculate than fully three-dimensional 

flows. The study of flow approaching a 45 degree, infinite, swept step is reported by 

Johnston (1970). This is a rapidly-turned flow which approaches separation. Having 

measured the Reynolds shear stresses in this flow, Johnston noted that the differ- 

ence in angle between 7T and 7fl was as great as 15 to 20 degrees, with 7T lagging 

75. Pierce and Duerson (1975) measured the boundary layer on the end wall of a 60 

degree bend, using hot-film anemometers. They concluded that the u'w' stress was of 

greater magnitude than the u'v' stress, and questioned the wisdom of ignoring u'w' 

in models. Then, Pierce and Ezekewe (1976) made approximate measurements of the 

gradients of the shear stresses, and demonstrated that the terms u
d™ and u

d™ were 

as small as one-tenth the size of &j^- and ^^, which means that the role of u'w' in 

the production terms of the Reynolds stress transport equations is much smaller than 

the roles of u'v' and v'w'. These findings are important to the current study because 

we choose not to measure the u'w' shear stress. 

Pierce and East (1971) are worth adding to these early experiments for casting 

doubt on Johnston's theory of collateral flow at the wall. Using a finite-difference eddy 

viscosity calculation of Johnston's 1960 experiment, they predicted that W would not 

be a simple scalar product of U near the wall. 
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1.2.2   Post-1976 experiments 

Several studies appeared in the following years, with measurements of the Reyn- 

olds stresses. Dechow and Felsch (1977) investigated a boundary layer approaching an 

obstacle, reporting the six Reynolds stresses as close to the wall as 2 mm. Contrary 

to most of the early studies, they reported that the shear stress angle led the velocity 

gradient angle for most of the flow. Fernholz and Vagt (1981) reported behavior of 

the shear stress angle for the flow over an axisymmetric body, with a swept back- 

plate that created a strong, asymmetric pressure gradient. This pressure gradient 

produced a three-dimensional turbulent boundary layer in the vicinity of separation. 

They emphasized the need to measure near-wall Reynolds stresses, and succeeded 

in measuring u'2 with a single hotwire as close as y+ = 4, but could only measure 

the shear stresses down to y = 2 mm (y+ = 35 to 100). They noted a reduction in 

ai with increasing three-dimensionality. Pierce and McAllister (1982) performed two 

experiments, with geometries like those of Dechow and Felsch (1977) and Johnston 

(1970). They measured only mean flow and wall shear stress, and noted that the 

mean velocity appeared to be turning all the way to the wall. Müller (1982) mea- 

sured flow turned spanwise by vanes, in a geometry similar to the current experiment. 

He reported that the shear stress angle lagged the velocity gradient vector, in a flow 

with a fairly strong adverse pressure gradient. 

Bradshaw and Pontikos (1985) revisited an experiment by Elsenaar and Boelsma 

(1974) in which flow over an infinite swept wing was simulated. They noted two 

general trends in three-dimensional turbulent boundary layers: the shear stress angle 

lagging the velocity gradient angle, and the reduction of ai. They suggested that the 

tilting sideways, or "toppling", of large eddies is the physical mechanism by which the 

shear stress is reduced relative to the turbulent kinetic energy, attributing this three- 

dimensional effect to outer-layer phenomena. They also suggested that the angle lag 

is due to changes in the pressure-strain redistribution term in the Reynolds stress 

transport equations. 

In the late 1980's, the possibility of computing complex flows like three-dimensional 

turbulent boundary layers became evident. A number of experimental studies had as 

a primary goal to be test cases for computations. 



Anderson and Eaton (1989) (see also Anderson and Eaton (1987) for complete 

data) investigated the flow in a Y-shaped duct. Their objective was to vary a single 

parameter, the ratio of spanwise to streamwise pressure gradient. Measuring fluctu- 

ating quantities as close to the wall as y+ = 50, they found ax dropping in the outer 

part of the boundary layer. They suggested that the near wall region, especially in 

the vicinity of y+ = 20, would hold the key to the decrease in aj, since the peak of 

shear stress production should be there. They also postulated that the crossflow may 

serve to stabilize longitudinal vortices whose vorticity opposes the crossflow vorticity. 

Shizawa and Eaton (1991) introduced a longitudinal vortex into the Anderson and 

Eaton flow, to test this theory. The vortices were of the same size as the boundary 

layer, and the crossflow was seen to suppress a\. Maps of eddy viscosity in this study 

dramatically capture the futility of that type of model in capturing the details of the 

boundary layer - vortex interaction. 

Pierce, along with Harsh and Menna (Pierce and Harsh (1988), Menna and Pierce 

(1988)) studied another obstacle flow, attempting to produce a complete, fully- 

documented flowfield. Their turbulence data reach only as close to the wall as 1.3mm, 

which for their flow is y+ « 60. 

Ozcan (1988) measured the axial flow over a cylinder with a swept bump, using a 

laser Doppler anemometer. The flow reverses directions three times over the bump, 

creating considerable confusion. He reports that a\ ranges from 0.1 to 0.2. This is 

the highest reported oi in the literature; perhaps it is anomalous. 

A European collaborative study began in the mid 1980's to fully describe the 

three-dimensional turbulent boundary layer flow over a swept wing. Van den Berg 

(1988) described the inception of the project; Gleyzes, et ah (1993) described some of 

the early results. They found a peak in turbulent kinetic energy away from the wall 

on the suction side of the wing, which they credited to the adverse pressure gradient. 

When complete, the European collaborative study should offer an enormous dataset 

for comparison to computations. 

Baskaran, Pontikis, and Bradshaw (1989) extended the infinite swept wing study 

of Bradshaw and Pontikos, by adding surface curvature, both concave and convex. 

Lest we forget that the phenomena in question are highly nonlinear, they discovered 
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that the combined effects of spanwise and longitudinal curvature appeared to be less 

than the effect of each curvature on its own. 

Schwarz and Bradshaw (1992), (1993), (1994) measured the three-dimensional 

turbulent boundary layer on the end wall of a 30 degree bend, concentrating on 

the centerline of the flow in order to study the effects of spanwise pressure gradient 

essentially free from streamwise pressure gradient. They measured only the outer 

part of the boundary layer. Throughout both the development and the decay of the 

three-dimensionality, they found a\ suppressed. They found the shear stress to lag 

the strain rate, siding with the majority of the studies mentioned so far, and further 

learned that the flow angles were slower to recover than to develop. They measured 

some of the terms of the Reynolds stress transport equation, and compared several 

current models for turbulent transport and for the pressure-strain term against the 

data. They concluded that the models for the turbulent transport terms all had 

significant errors, but that those errors were small compared to the pressure-strain 

term. The pressure-strain models tested were all found to be reasonably accurate, 

with the nonlinear models providing no significant advantage over the linear models 

for this particular flow. 

Chesnakas and Simpson (1994) reported near-wall measurements in the three- 

dimensional turbulent boundary layer over an inclined prolate spheroid. Using a 

unique laser Doppler anemometer, they measured the Reynolds stresses as close to the 

wall as y+ = 7. They also analyzed the turbulent kinetic energy budget and found the 

structure parameter to decrease with increasing three-dimensionality, and proposed 

an empirical relation to describe the shape of the ai profile. Their measurement 

techniques are described in Chesnakas and Simpson (1992), and will be discussed in 

Chapter 3. Kreplin and Stager (1993) also reported on a prolate spheroid geometry. 

They found the usual lag between 7T and 75, and suppression of ai in the outer part 

of the boundary layer, but their detailed data are highly suspect, for they used a 

four-sensor hotwire anemometer with poor resolution, prone to errors where there is 

strong velocity gradient. 

Pompeo, Bettelini, and Thomann (1993) measured the effects of diverging and 

converging streamlines in the presence of constant-velocity outer flow.   Streamline 
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convergence or divergence is present in most three-dimensional turbulent boundary 

layer geometries. They concentrated their efforts on the plane of symmetry, but the 

study is worth including here because of a computational difficulty it points out: 

small errors in the crossflow in the neighborhood of the plane of symmetry lead to 

large errors in the momentum thickness on the plane of symmetry. Thomann (1994) 

later reported that this difficulty is due to singularities which appear in integral and 

finite-difference methods, which utilize the boundary layer assumptions. 

1.2.2.1   Shear-driven experiments 

We will briefly mention a few noteworthy shear-driven three-dimensional turbu- 

lent boundary layer experiments. The earlier studies of Bissonette and Mellor (1974) 

and Lohmann (1976) both examined axial flow over rotating cylinders. Driver and 

Hebbar (1987) studied the axial flow over a rotating cylinder followed by a stationary 

section. Driver and Johnston (1990) expanded that study to include an adverse pres- 

sure gradient. The geometry produced a highly skewed three-dimensional turbulent 

boundary layer at the start of the spinning section, which gradually relaxed back to 

two-dimensional. They observed the shear stress angle lagging the mean strain rate 

angle, along with suppressed values of a,\. The suppression of ai was stronger for the 

cases of high adverse pressure gradient. 

1.2.3   Structure experiments 

Several recent studies of three-dimensional turbulent boundary layers have exam- 

ined turbulence structure, using flow visualization and multi-point measurements. 

Littell and Eaton (1991a), (1991b) investigated the turbulent boundary layer on 

a disk rotating in an otherwise quiescent environment. The disk boundary layer is 

three-dimensional because the low momentum fluid near the surface is flung outward 

by centrifugal acceleration. The study is notable for being the first three-dimensional 

turbulent boundary layer experiment to include two-point correlations. From the 

two-point correlations, Littell and Eaton inferred that there were strong asymme- 

tries in the structure of the three-dimensional turbulent boundary layer. Conditional 
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sampling of the shear-stress-producing events indicated that longitudinal vortices of 

either sign occurred with equal frequency. However, the ability of one sign of vortex 

to generate strong ejections was suppressed. 

Chiang and Eaton (1993) also investigated a disk boundary layer, using a water 

flow apparatus and relatively low Reynolds numbers to facilitate flow visualization. 

Their mean flow data agreed well with Littell's. Using flow visualization of longi- 

tudinal vortex structures very close to the wall, they observed that both signs of 

longitudinal vortices produce ejections at the same rate, but that one sign of vortex 

produced stronger ejections. 

Eaton (1994) concluded from his group's studies that it is indeed appropriate to 

interpret the structure of three-dimensional turbulent boundary layers as a distorted 

version of two-dimensional boundary layers. He cited the turning of the mean velocity 

in the region t/+ < 100 as a major factor in producing this distortion. 

Ha and Simpson (1993) investigated length scales of flow structures in a three- 

dimensional turbulent boundary layer. They looked into the spatial structure of the 

flow in a wing-body junction geometry previously studied by various members of 

Simpson's group. They used an array of hotwires at varying heights from the wall 

to find a coherence length scale based on two-point correlations of u. The near- 

wall coherence length scale was reduced by increasing three-dimensionality. Fleming 

and Simpson (1994) performed hydrogen bubble flow visualization in a flow of the 

same geometry, yet at much lower Reynolds numbers. They estimated the Reynolds 

number based on momentum thickness to be around 500 to 800. They discovered 

two main differences from two-dimensional boundary layers: The three-dimensional 

flow appeared qualitatively more stable and organized than two-dimensional flow at 

5 < y+ < 30, and there was a 10% decrease in the spacing of the streaky structures. 

Flack and Johnston (1993a), (1993b) investigated the near-wall region of two 

three-dimensional turbulent boundary layers. They reproduced the experiments of 

Schwarz and Bradshaw (1992) and Johnston (1970) at an initial Ree around 1400. 

They concluded that there is no near-wall collateral region, and that rapid turning 

seems to have less effect on a\ than does gradual turning. Flack and Johnston (1995) 

reported from investigation of flow visualization of the same flow that the streak 
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spacing was reduced by three-dimensionality, agreeing with the findings of Fleming 

and Simpson (1994). 

Worth mentioning here is an analytical study by Bassom and Hall (1991). They 

investigated the receptivity of Görtier vortices to roughness in situations where a 

turbulent boundary layer is very mildly three-dimensional and at very low Reyn- 

olds number. Their linear stability analysis demonstrated that crossflow can have a 

stabilizing effect upon vortical structures. 

1.3   Computations 

Direct numerical simulation (DNS) of turbulent flows has only recently been made 

possible, thanks to the continual development of supercomputers. These calculations 

can rightly be grouped with experiments, for they represent exact solutions of the 

time-dependent Navier-Stokes equations. Unfortunately, solutions are only available 

at low Reynolds numbers and for simplified boundary conditions. Direct numerical 

simulations have the distinct advantage of the possibility of measuring all the terms 

in the Reynolds stress transport equations. 

The earliest three-dimensional turbulent boundary layer studied via DNS was by 

Spalart (1989). A half-plane of fluid bounded by a wall had its freestream velocity 

vector continually rotating but of constant magnitude. The flow was similar to an 

Ekman (infinite rotating disk) boundary layer, and is referred to as a "scrubbing" 

flow. The scrubbing flow did not demonstrate strong three-dimensionality in that 

7T - 75 was small, and the Reynolds number was low, but the study may prove useful 

because it provided a look at the Reynolds stress budget near the wall, where physical 

experiments have not reached. 

Moin, Shih, Driver, and Mansour (1990) applied three-dimensionality to the fully 

developed turbulent channel flow of Kim, Moin, and Moser (1987). The three- 

dimensionality was in the form of a spanwise pressure gradient. Moin et al. likened 

their study to an infinite swept wing, but pointed out that an essential difference is 

that their channel experienced temporally evolving three-dimensionality which has no 

streamwise velocity gradients. They credited a decrease in the production term and 
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a decrease in the dissipation term of the Reynolds stress transport equations with 

causing an observable reduction in the turbulent kinetic energy. 

Sendstad and Moin (1992) looked in detail at the same flow, investigating struc- 

tures in the instantaneous flow fields. They found that vortices of the same sign as 

the crossflow vorticity are weakened, and that the streaky structures at y+ = 10 are 

broken up when three-dimensionality is applied. 

1.4  Modeling concepts 

For engineering purposes, the goal in modeling three-dimensional turbulent bound- 

ary layers is to predict boundary layer displacement thickness, wall shear stress mag- 

nitude and direction, and mean flow profiles. As we saw in the earliest experiments, 

attempts were made to determine some sort of universal crossflow profile. Those 

attempts have essentially been abandoned, though theoretical limits have been ad- 

dressed. Ölcmen and Simpson (1992) present a brief review of experimentally mea- 

sured three-dimensional turbulent boundary layers, and apply a number of variations 

of "law of the wall" logarithmic formulas to the mean velocities. As might be guessed 

by the discussions to this point, none of the relations adequately described all of the 

flows. Degani, Smith and Walker (1992) performed an asymptotic study of the mean 

crossflow profile in a three-dimensional turbulent boundary layer with small crossflow 

at high Reynolds number. They found that the near-wall flow should be collateral 

to leading order, and that W profiles should display a logarithmic region at high 

Reynolds number. Degani, Smith and Walker (1993) extended that study to fully 

three-dimensional boundary layers, again seeking a functional form for the W profile. 

They found a theoretical W profile, but cautioned that it would not be expected to 

apply to a flow approaching separation. 

The next step is an eddy viscosity model. Olcmen and Simpson (1993) used the 

same datasets as before to evaluate eddy viscosity models, reporting on the models' 

ability to predict the magnitude and direction of the Reynolds shear stresses. Though 

they slightly favored a model by Johnson and King they discovered that these simple 

models were consistently wrong. Bettelini and Fannel0p (1993) offered a very similar 
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review and came to similar conclusions, offering adaptations to the Johnson-King 

eddy viscosity model. 

Rotta (1977) offered an adaptation of eddy viscosity modeling for three-dimensional 

boundary layers. His widely-tested (but not wildly successful) "Rotta T" model in- 

troduces an anisotropic eddy viscosity which depends on a new parameter T, which is 

equivalent to the ratio N discussed earlier, and depends on the direction of the local 

free-stream velocity. It has a major flaw in that it is not translationally invariant. 

A step up in complexity from algebraic eddy viscosity modeling is k — e modeling. 

Transport equations are made for the turbulent kinetic energy and the dissipation; 

then an eddy viscosity is defined: 

vr = cßk
2/e (1.10) 

The eddy viscosity varies throughout the flow but is still assumed to be isotropic, so 

k — e methods encounter the same difficulty as simple eddy viscosity methods. 

Reynolds stress transport models, or "second-moment closure" models, rely on 

approximations for certain terms of the Reynolds stress transport equations (c.f. 

Launder (1988)). A difficulty near the wall where all turbulent boundary layers are 

concerned is the anisotropy in the dissipation. Most second-moment closure models 

take as an essential assumption that the dissipation is isotropic. 

1.5   A note on choice of coordinate system 

It is appropriate at this stage to include a brief discussion on coordinate sys- 

tems. In three-dimensional turbulent boundary layer research, data are presented 

and discussed in a number of systems, and there is considerable disagreement as to 

which system is the most logical. All the coordinate systems are orthogonal, with the 

wall-normal coordinate designated as y, and the streamwise and spanwise coordinates 

designated as x and z. It is not clear as to which direction is best called "streamwise," 

however. 

Aligning the coordinates with the physical axis of the wind tunnel, upstream of 

any three-dimensionality, is a logical first choice for many experiments. Viewing data 
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in these coordinates allows us to see the global development of three-dimensionality 

and the flow history, which Johnston cites as important in his 1976 review. 

The local freestream streamline defines a second coordinate system. For some 

studies this is the logical physical choice, especially in rotating flows. We can better 

see the effects of three-dimensionality in this system, where W is by definition zero 

in the freestream. 

Some researchers choose the direction of the wall shear stress as the direction 

of the x axis. This system is consistent with the concept that quantities in the 

boundary layer scale with the wall shear stress. Many experimental studies have 

difficulty presenting data in this coordinate system because of large uncertainties in 

measuring the angle of the wall shear stress. 

Another popular coordinate system in the early studies is obtained by aligning the 

x axis with the local mean velocity vector. This is certainly convenient for displaying 

crosswire data, in the coordinate system of the probe stem, but it is not possible to de- 

rive simple transport equations in a coordinate system that has a different orientation 

at every point in the flowfield. 

Occasionally, alternative coordinate systems are chosen. Olcmen and Simpson 

(1994), for example, have selected coordinates aligned with the direction of maxi- 

mum normal stress, claiming this as the intuitive choice for capturing the interaction 

between near-wall and outer region flow. 

Whichever coordinate system is chosen, it is essential that a model be at least 

translationally and rotationally invariant. 

1.6   Near-wall experimental methods 

It is apparent from the experimental data sets available that there is a serious gap 

in data in the region of high skewing in three-dimensional turbulent boundary layers, 

below y+ = 100. The primary reason for the lack of data near the wall is the need for 

high spatial resolution instrumentation where the velocity gradients are large. Two 

approaches may be taken to acquiring high-quality near-wall data. The first option 

is to increase the length scales in the boundary layer; the second is to decrease the 
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length scale of the measuring instrument. 

The study of Flack and Johnston (1993a) is a good example of increasing the 

length scales to acquire near-wall data. They used a large water channel in which 

the boundary layer developed over a distance of 3 meters before entering the three- 

dimensional test section. They also ran the experiments at very low Reynolds num- 

ber to further thicken the near wall layer. Perhaps more three-dimensional turbulent 

boundary layer experiments should be run in large facilities. However, many of the 

flow geometries studied to date would be very difficult and expensive to implement 

in a large wind tunnel or water channel. An alternative is to use a very viscous fluid. 

Fontaine and Deutsch (1995) used a conventional laser Doppler velocimeter (measur- 

ing volume 80>m x 820/mi) in the glycerin tunnel at Pennsylvania State University, to 

measure shear stresses down to y+ = 3 in a turbulent pipe flow, Reg = 720. Johansson 

and Karlsson (1989) reported data down to y+ = 5 in a two-dimensional boundary 

layer Reg = 2420, using a similar-sized measuring volume. Such highly specialized 

facilities are rare, though, and to date none have been used for three-dimensional 

turbulent boundary layer research. 

To measure Reynolds stresses near the wall in a moderate Reynolds number three- 

dimensional turbulent boundary layer it is generally necessary to increase the spatial 

resolution of the instrumentation. Johansson and Alfredsson (1983) illustrated this 

fact by measuring velocity fluctuations with hot film probes of various lengths. They 

showed that the maximum measured turbulence intensity (around y+ = 10) is a 

strong function of L+, the probe sensing length in wall units. In air, at a moderate 

Reg, we might expect y+ = 1 to correspond to 30^m. Measurements below y+ = 10 

would require instrument length scales significantly less than 0.3 mm. This type of 

resolution is impossible with hotwire anemometry. 

1.7   Motivation for the current study 

There are a significant number of critical issues to be addressed in three-dimensional 

turbulent boundary layer research. A picture is beginning to emerge of the behavior 

of three-dimensional turbulent boundary layers, but relatively few accurate data sets 
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are available. High Reynolds number studies are nonexistent at this point, but we 

will not address that gap in this study. Critical to the understanding of the budget 

of shear stresses and turbulent kinetic energy is the near-wall region.   Specifically, 

we would like to know what happens to the Reynolds stresses u'v' and v'w' in the 

region near the peak cross-stream velocity and approaching the wall, in a moderate 

Reynolds number boundary layer. 

1.8   Specific objectives of this study 

Based on the above motivations, our objectives are: 

• Develop, construct and test a near-wall laser Doppler anemometer. 

• Generate a simple three-dimensional turbulent boundary layer with well-understood 

pressure gradients at a moderate Reynolds number. 

• Map the upstream boundary layer, as well as the outer layer, using conventional 

instrumentation. 

• Measure several full profiles of the mean and fluctuating velocities, along two lines, 

as close to the wall as we can. 

• Arrange to measure streamwise and spanwise derivatives of the quantities measured, 

in order to evaluate terms of the Reynolds stress transport equations. 

• Interpret the data in terms of structure parameters, turning angles, and contributions 

to the development of shear stress and turbulent kinetic energy. 

• Test current models for the Reynolds stresses against the experimental data. 
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(a) 

(b) 

$%ZZzzz*^- 

Figure 1.1. Examples of three-dimensional turbulent boundary layer geometries: (a) 
Schwarz h Bradshaw bend; (b) obstacle of Simpson et al. ; (c) Anderson & Eaton 
wedge; (d) swept wing. 
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n 

Figure 1.2.  The canonical three-dimensional boundary layer. This figure serves to 
identify much of the nomenclature. 
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Chapter 2 

Facility and Conventional Experimental 

Methods 

2.1   Wind tunnel 

The wind tunnel used in this experiment was originally built to study control of 

separated flow and dynamic stall, in Stanford University's Heat Transfer and Tur- 

bulence Mechanics Laboratory. The wind tunnel provides a steady, low freestream 

turbulence environment. We chose to use this facility because in addition to these 

properties it has a long test section with Plexiglas walls, allowing the moderately 

large Reynolds numbers and the optical access necessary for this experiment. 

The closed circuit tunnel, shown in figure 2.1, has a centrifugal blower (New York 

AcoustaFoil), rated for 30,000 cfm, driven by a 40 horsepower motor with eddy- 

current clutch. The inlet to the blower is vented to the room; this ensures that the 

test section pressure is greater than atmospheric. Following the blower is a three- 

dimensional diffuser, which leads to a settling chamber. Flow conditioning consisting 

of a honeycomb and four screens precedes the three-dimensional contraction. The test 

section is 12 ft long, with a 24 in x 36 in cross-section. The boundary layer studied 

grows on a Plexiglas test surface 12 in above the floor of the tunnel. 

After the test section, the flow passes through a two-dimensional diffuser and 

two 90° bends. The return leg of the tunnel contains a second Plexiglas test section. 

Access to this second test section in the return leg of the tunnel allows for introduction 

of seed particles for the laser Doppler anemometer without disturbing the boundary 

layer in the primary test section. 

The temperature in the tunnel is maintained at a constant level of approximately 

295 K by a heat exchanger mounted between the two bends downstream of the test 

section. A 100 gallon reservoir is filled with cold tap water before running the tunnel. 

21 
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A water pump, with a user-set regulator and valve sends 3.0 gallons per minute of 

water from the reservoir through the heat exchanger and then to a floor drain. Make- 

up water is added continuously to the reservoir. The tunnel temperature reaches 

equilibrium within 30 minutes of starting. 

The wind tunnel speed is set to within 0.05 m/s of the desired speed by a closed- 

loop controller implemented in the laboratory computer. Velocity is measured using 

a keil probe suspended from the top of the test section 24 in downstream of the start 

of the test section. The tunnel velocity is set at least as often as once before each data 

acquisition run. The tunnel speed remains constant over long periods of time: the 

maximum drift over a several-hour data acquisition run was approximately 0.05 m/s. 

The freestream turbulence intensity yv/^/U2, well upstream of the wedge, is less than 

0.6 percent. 

2.1.1   Test section 

The test section is constructed of 0.75 in Plexiglas walls with an aluminum frame. 

The side walls of the test section are removable, to allow for the introduction of new 

test surfaces and other equipment. An 18 in wide section of the side wall allows quick 

access; this section can be placed in the center of the test section or at the rear. The 

side port was kept in the rear position for this study, and was removed frequently 

for probe access and for adjustment of optical components below the test surface. 

Additionally, three rectangular ports in the floor of the test section allow for access 

to pressure tap connections and for various cables to exit the test section. 

The test surface is a horizontal plexiglas plate, 0.75 in thick, held on six legs at 

12 in above the floor of the test section. The leading edge of the plate is a 3:2 elliptical 

nose. Weatherstripping along the edges of the test surface isolates the flow above the 

test surface from the flow below. 

A boundary layer trip was placed 15 cm downstream of the leading edge of the 

test surface. The trip consists of a 0.25 in x 0.625 in length of styrene. We were 

concerned with two criteria for boundary layer trips. First, the momentum thickness 

Reynolds number should be at least 200 upstream of the trip.   Based on laminar 
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boundary layer development before the trip, we calculate Reg to be approximately 

240 at x = 15 cm (c.f. Kays and Crawford (1980), equation 7-20). Second, the trip 

height should be of the same order of magnitude as the displacement thickness of 

the boundary layer. We estimate the displacement thickness at the trip location to 

be 0.7 mm. According to these criteria, the boundary layer trip was of proper size 

and placement. A third criterion, mentioned by White (1974), is that the Reynolds 

number based on trip height be at least 826. This criterion is also met by the boundary 

layer trip. In addition to the trip on the test surface, all sides of the inlet to the tunnel 

are equipped with "Dymo-V"1 boundary layer trips, to provide a stationary transition 

site. 

A spoiler flap at the end of the test plate is used to control the location of the 

stagnation point on the leading edge of the test surface. The spoiler flap was only 

necessary when we studied two-dimensional boundary layers. We attempted to use 

a pair of Preston tubes mounted just after the leading edge of the test surface to 

fine-tune the spoiler flap, but the results were unreliable. We found that the seed 

particles for the laser Doppler anemometer act as an excellent indicator: They collect 

at the stagnation line at the leading edge of the plate, showing clearly that there is 

no region of separation on the top of the test surface. 

Two separate test surfaces were used. One has static pressure taps at the locations 

shown in figure 2.5. The other is clear, for optical access at the same locations as 

the pressure taps. The tubing from the static taps exits the tunnel through a bottom 

port. In order to minimize blockage from tubing, we make a maximum of six static 

pressure measurements at a time. 

2.1.2   Three-dimensional boundary layer configuration 

One of our goals is to generate a simple three-dimensional boundary layer, at a 

moderately high Reynolds number. A 30° Plexiglas wedge placed in the rear of the 

test section as shown in figure 2.2 produces the spanwise pressure gradient to turn 
1Dymo brand labelers create plastic strips with raised letters. The letter V, evenly-spaced, with 

the top pointed downstream, is commonly used as a boundary layer trip. Its length is approximately 
4 mm and its height approximately 0.4 mm. 
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the streamlines. The wedge spans the entire working height of the test section and 

blocks exactly half of the test section exit area. The leading edge of the wedge is 

at x = 122.3 in, allowing the two-dimensional boundary layer to develop to a mod- 

erate Reynolds number at a fairly low velocity. Potential flow calculations indicate 

freestream turning angles between 0° and 30°, but we planned to measure only the 

region where the turning angle is around 15 degrees or less. This constitutes a flow 

field which turns more rapidly than that studied by Schwarz and Bradshaw and less 

rapidly than the Anderson and Eaton wedge flow. 

In order to relieve some of the favorable pressure gradient set up by the presence 

of the wedge, a fairing is added to the top of the test section, as indicated in the side 

view of figure 2.2. The fairing geometry is shown in more detail in figure 2.3. The 

idea was to allow the height of the test section to increase in the region where the 

width is decreasing, in the presence of the wedge. Contracting the test section early 

allows the boundary layer to grow to a reasonable thickness. 

Several iterations were made on the design, each successive design relieving more 

of the favorable pressure gradient. The final design, depicted in figure 2.3, is 9.125 in 

high and spans the entire 12 ft length of the test section. The initial section is a 

smooth contraction formed over a length of 15.12 in. Following the contraction is a 

108.10 in development section, where the fairing is flat. The remainder of the fairing 

increases test section height linearly, where the wedge is decreasing the width linearly. 

Transitions between the sections are smoothed as indicated in figure 2.3. 

2.2   Laboratory computers 

Almost all of the data acquisition and control is performed by laboratory com- 

puters. The primary computer was an IBM PC-AT (80286 microprocessor) equipped 

with an IBM DACA card for analog and digital input/output, and with a National 

Instruments GPIB card. The DACA card has four differential-input analog-to-digital 

(A-to-D) channels, with a range of ±10 Volts and 12 bit resolution. Prior to each day 

of data acquisition the voltage offset of each A-to-D channel is measured by shorting 

the input channels; the offset is subsequently subtracted from all voltages measured. 



Chapter 2. Facility and Conventional Experimental Methods 25 

All data acquisition programming on the IBM is written in Microsoft QuickBasic 4.5. 

In addition to the IBM PC, a Macintosh Quadra 650 is used for crosswire mea- 

surements, when it is necessary to collect multi-channel data simultaneously. The 

Macintosh is equipped with a National Instruments NB-MIO-16L I/O card, with 

eight differential-input A-to-D channels with 12 bit resolution. The A-to-D channels 

have selectable ranges; we used ranges of ±1 and ±10 Volts. All programming on the 

Macintosh is done in Lab View 3.0. 

2.3   Motor-controlled traverses 

All wall-normal traversing is performed by using traverses driven by stepper mo- 

tors. The probe traverse is mounted on rails above the test section. It is a Unislide 

linear traverse, with a 20 thread per inch lead screw and over 24 inches of travel. 

The motor can be stepped at 200 steps per revolution, so vertical traversing is in 

increments of 0.00025 in (0.00635 mm). A second vertical traverse sits in the test sec- 

tion under the test surface and translates optical components for the laser Doppler 

anemometer; this smaller Unislide has a 40 thread per inch lead screw, allowing 

0.003175 mm resolution. 

Two motor controllers drive the motors, a Superior Electric Translator Drive, 

model 230, and a SLO-SYN model TBM 105-6209. Both controllers supply the 

necessary current to turn the motors, based on square waves fed to them by the 

DACA card's binary output channels. 

Traversing in the streamwise (x) direction is performed manually, facilitated by the 

top traverse mounted on rails in that direction. Traversing in the spanwise direction 

is limited to two discrete locations, corresponding to two slots in the top wall of the 

tunnel at z = 0 (the centerline) and z = —3.5 in. The vertical traverse is not moved 

in the spanwise direction; the probe holder adapts to hold the probe in either of the 

two slots. The center slot is sealed using a pair of spring-loaded metal tape measures 

which lie in a groove. Additional sealing is provided by weatherstripping in the slot. 

The off-center slot is sealed with tape. The fairing has slots which correspond to the 

slots in the top wall of the test section. 
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One probe holder was fabricated to accommodate all the probes used to traverse 

the boundary layer. The probe holder is depicted in figure 2.4. The apparatus 

accommodates 0.3125 in diameter probe shafts; a fairly large diameter was chosen 

because stiffness was a consideration in probe design, since the probes are subject to 

a crosswind along the length extended into the wind tunnel, up to 24 inches. The 

probe holder may be yawed about the probe axis manually, and is equipped with a 

dial indicator and vernier, providing 0.2° resolution. 

2.4   Temperature and pressure 

An Omega ON-910-44007 thermistor probe is used with a homemade voltage 

divider network to determine the air temperature in the tunnel. The thermistor sits 

inside the test section, below the test surface. The laboratory computer supplies the 

excitation voltage to the voltage divider circuit through one D-to-A channel, and 

measures both the thermistor voltage and the excitation voltage with two separate 

A-to-D channels. Once we determine the thermistor resistance, Rth, measured in 

Ohms, we use the following relation to determine the temperature in Kelvins: 

Wins] = 1/(A + B\og10(Rth) + C(\og10(Rth))3), (2.1) 

where 

A   =   1.2858 x 1(T3 (2.2) 

B   =   2.3599 x 1(T4 (2.3) 

C   =   9.4329 x 10-8, (2.4) 

as given by Simonich and Moffat (1982), accurate to within 0.01 K of the Omega 

table. 

Two Setra pressure transducers (model 239 and model 264) are connected to 

the laboratory computer and used for the pressure measurements necessary to the 

study. Both measure a range of ±0.5 in of water, over a 5 Volt output range. These 

transducers were calibrated on a daily basis against a Combist micromanometer, 

which has a resolution of 0.0005 inches of water. The measurements taken during the 
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two-point calibrations were averages of 6000 samples over 30 seconds; care was made 

to assure that the transducers had settled before making calibration measurements. 

Atmospheric pressure was checked daily, and accounted for in gas density calcu- 

lations. 

2.5   Three-hole probe 

A three-hole, or Conrad, pressure probe, is used to measure mean velocity and 

skew angle. The three-hole probe is similar to that used by Anderson and Eaton 

(1987). Anderson found that using tubes chamfered at 40° provides for strong sensi- 

tivity to yaw angle while being relatively insensitive to small changes in pitch. The 

tubes used for this three-hole probe are hypodermic needles with an outer diameter 

of 0.8 mm. The probe has a gooseneck shape, so that the tip of the probe is aligned 

with the probe stem axis. 

To calibrate the three-hole probe, we placed the probe in the freestream of the 

wind tunnel, without the three-dimensional wedge installed. We ran the tunnel at 

four diiferent speeds and varied the angle of the probe, 7, defined in figure 2.6. Note 

that if the probe is aligned with the x-axis, the angle reported is of opposite sign as the 

flow angle in a right-handed coordinate system. The calibration data are presented 

in figures 2.7 and 2.8 as dimensionless variables: 

R = ^^ (2.5) 
P\ ~Ps 

S=*-P;    , (2.6) 
\P2-Psh=0 

where p\ and pz are the pressures in the side tubes, p2 is the center tube pressure, 

and p3 is the static pressure. The data from all four speeds collapse on R vs. 7 and 7 

vs. S curves. The four sets were averaged, then a fourth order polynomial curve was 

fit to R] three separate polynomials were fit to S. The polynomials are: 

7 = r0 + rxR + r2R
2 + r3R? + uR4 (2.7) 

S = s0 + S17 + S272 + S373 + *474 (2.8) 
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The coefficients for these equations axe found in table 2.1. 

Yaw calibration Magnitude calibration 

-30° < 7 < -6° -6° < 7 < 6° 6° < 7 < 30° 

ro .273349613 so .988815069 1.000429630 1.003293037 

ri 20.373661041 Sl -.004214720 -.000208973 -.000346008 

7*2 .000813345 52 -.000535055 -.000132969 -.000122061 

7-3 -1.065526605 53 -.000005085 n/a -.000011138 

u -.012972006 54 -.000000062 n/a .000000165 

Table 2.1. Three-hole probe calibration coefficients. 

Near the wall, pressure probes are prone to error. This error was well-documented 

for single pitot tubes by Young & Maas (1936). The proximity of the three-hole 

probe to the wall causes the streamlines to be diverted, and we effectively measure 

at a height slightly above the physical probe location. The correction is based on the 

outer diameter (OD) of the tubes: 

Vcorrected — * 
J/ + 0.18OD    m>0.1 

y + 1.8mOD   m < 0.1 

m = OD—— 
U dy 

(2.9) 

(2.10) 

For the lowest points measured, this correction is 0.014 mm, and it tapers to at the 

edge of the boundary layer. The correction changes the lowest point reported by 

only 2%. An asymmetric probe is susceptible to misreporting the flow angle near the 

wall. We measured a two-dimensional boundary layer with this probe and found that 

its maximum angle error was 1.5°, at a height of 1 mm from the wall. There was 

virtually no error in reported angle above y = 6 mm. 

The probe is used in "non-nulling mode''; i.e., the probe is not necessarily aligned 

with the local mean velocity at each position. Rather, the calibration constants 

are used to determine the angle and velocity of the approaching flow.   The probe 
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was always rotated so as to keep the measured velocity angles within the range of 

calibration, and roughly centered in the range of calibration. Profiles acquired using 

the three-hole probe utilized a secondary static port with known pressure difference 

from the local reference static pressure, in order to prevent the probe's presence from 

altering the measured local static pressure. 

The probe was aligned in the x direction by using the static pressure taps as 

markers; misalignment in x was no more than 1 mm. The probe holder controlled 

the z alignment. Placement in y was done by traversing the probe toward the wall 

and monitoring the probe tip visually. With practice, we found we could visually 

determine when the probe was between 0 and 0.2 mm (y+ w 6) from the wall. 

Each three-hole pressure data point was acquired over a period of 30 seconds, with 

6000 samples each of (pi — pa) and (p2 —pa), acquired at a rate of 200 Hz. A 30 second 

pause between moving the probe to a new location and acquiring pressure samples 

assured that the pressure had settled. Averages were made in software; individual 

samples were not kept. 

Anderson and Eaton (1987) used a three-hole pressure probe of identical design. 

They analyzed the uncertainties in the measurements, citing three main sources for 

uncertainty: uncertainties in the probe response calibration, in the two differential 

pressures measured, and and in the local static pressure, measured separately from 

the other pressure measurements. Combined, these uncertainties are ±0.2 m/s in 

velocity magnitude and ±1.0° in direction. 

2.6   Hotwire anemometry 

An X-array hotwire probe (crosswire) shown in Figure 2.9 was used for turbulence 

measurements in the outer part of the boundary layer. We used the same crosswire 

used by Anderson and Eaton (1987), with minor modifications for use in a larger wind 

tunnel. A DISA 55-P-51 dual-sensor hotwire tip forms the sensor. It is mounted in a 

gooseneck probe configuration, which allows the probe tip to be rotated about the y- 

axis, while remaining in the same (x, z) position. The probe tip rotates about its own 

axis, also, to enable the four wire positions necessary to find the full Reynolds stress 
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tensor. One position is used to measure u and w simultaneously, and a second position 

measures u and v simultaneously. These two positions yield the mean flow and five of 

the six Reynolds stress components. Two additional positions are used to indirectly 

measure v'w'. A pin through holes on the back of the hotwire tip allows indexing 

at 45° increments. The pin is spring-loaded, and rotation is controlled through the 

use of actuators at the top of the probe shaft, so rotation about this axis may be 

controlled from outside the tunnel. 

The sensor is comprised of two tungsten wires with gold-plated ends. The wires 

are 5 mm long, with an active length of 1.25 mm, and 5//m in diameter, giving a 

length-to-diameter ratio of 250. The two wires are spaced approximately 1.0 mm 

apart. The sensor is tilted toward the wall at a grazing angle of 0.75°, measured 

optically. 

A TSIIFA-100 unit is used as the constant temperature bridge electronics for the 

crosswire. The IFA-100 contains all the traditional components of hotwire circuitry: 

a bridge, filters, and offset and gain electronics. We chose unity gain for the signals, 

using the -1 to 1 Volt range on the A-to-D card on the Macintosh. The final signal 

was low-pass filtered at 20 kHz to remove spurious high frequency noise. 

Calibration of the crosswire is a two-step process. First, the velocity response of 

the two individual wires is determined. Then, the angle of the wires is inferred. A new 

calibration was performed for each boundary layer profile, typically after two hours 

of data acquisition. After each profile, the crosswire probe was recalibrated. The 

difference between calibrations before and after profiles was typically around 1.5%. 

Calibration was performed with the crosswire in the wind tunnel, at the furthest 

upstream location in the slot in which the profile was to be taken, at a height y = 

75 mm above the wall. Prior to calibrating the hotwire, the three-hole probe was 

used to determine the correlation between the local total pressure at the calibration 

site and the pressure difference between the keil probe and reference static port. A 

linear fit correlating the two pressure data sets had mean squared error of 1.00 x 10~6. 

This function was used during the hotwire calibration. 

We operated the tunnel at twelve preset (increasing) velocities to find the cor- 

relation between velocity and bridge voltage.   A linear least squares fit to "King's 
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law," 

u = k(e2 - E2
Qfln (2.11) 

was performed to determine the quantities k and E$ at each calibration. The rms 

error between the fit and the measured un was typically around 1 x 10-7. We found 

that using the exponent n = 0.43 the calibration was most linear. 

A temperature correction is often included in hotwire calibration schemes. With 

the tunnel temperature remaining constant, we did not need to use such a correction. 

The maximum temperature change we see over the course of a profile is IK. We 

use Littell's temperature correction scheme to predict the error due to this change 

in temperature, and find that the measured velocity would change by approximately 

1% due to one degree change in ambient temperature. 

The angular sensitivity of the hotwires is assumed to be a cosine response. Al- 

though earlier studies cite a minimum length-to-diameter ratio of 600 for cosine re- 

sponse, Littell and Eaton (1991) investigated the angular response of a single 2.5/mi 

diameter wire, 1/d = 255, finding its response over ±60° to match a cosine curve 

almost perfectly: 

«measured = «COS ^, (2.12) 

where ip is the angle between the wire and the mean velocity vector. We therefore 

assume these wires also exhibit cosine response. 

In order to determine the angles of the wires, the probe is placed in the u'w' 

position, with both wires essentially parallel to the test surface, but well out of the 

boundary layer. Because we assume a cosine response, we may use any two positions 

with a known offset angle A^ to estimate the wire's angle with respect to the flow. 

U0   =   Uecosfa (2.13) 

Ui   =   J7ecos(0o + A^) (2.14) 

Combining and solving for fa, we find 

^o = tan"1 (cot A^ - ^-V?^-1 (2.15) 
\ sin AipU0J 

Following the example of Littell and Eaton, we rotate the probe stem through five 

positions: 7 = -10°, 7 = -5°, 7 = 0°, 7 = 5°, and 7 = 10°. For each position of 
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the probe, we solve the above equation four times, corresponding to the other four 

positions, using known Aip angles. We average the results, and thus have an estimate 

for each of the five positions. Then, we subtract off the known offsets and average 

again to yield the angle of the wire. This entire process is repeated for the second 

wire. The two wire angles are called ^i and \&2- *2 is negative. 

Finally, we correct the originally measured k for each wire based on the cosine of 

the wire's angle, to reflect the fact that the velocity calibration is performed with the 

wires angled with respect to the flow. 

2.6.1 Data acquisition and reduction 

The crosswire probe is aligned with the mean flow at every point in the profile, 

during data acquisition. We acquire a profile of the boundary layer in four of the 

probe's "roll" positions in order to obtain all the components of the Reynolds stress 

tensor; u'v' and u'w' are measured directly but v'w' is measured indirectly. The u'w' 

stress is likely to have high uncertainties near the wall since the two wires are at 

different heights. 

At each location, we collect 4000 samples from each wire at a rate of approximately 

200 Hz with a time separation of 20/xs between wires. Appendix A describes the data 

reduction in detail. 

2.6.2 Uncertainty 

We used the same probe tip as Anderson and Eaton (1987), and we should expect 

similar overall uncertainties. They catalogued a number of sources of uncertainty: 

probe misalignment during calibration or data acquisition, temperature variation, 

uncertainties in voltage measurement, global uncertainties in the calibration proce- 

dure, and uncertainties due to violations of the assumptions mentioned in section 

§2.6. They assigned the uncertainty levels listed in table 2.2. They cited Müller 

(1982b), who estimated that the v'w' Reynolds stress could be off by as much as 15% 

of u'v'. We note that the uncertainties must be highest near the wall, especially for 

the quantities u'w' and v'w' in regions of large wall-normal gradients, where the probe 
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Error in percentage of Quantity 

U, V ,W ±3% U 

u*2, vn, wn ±5% v? 

u'v', u'w' ±10% u'v' 

v'w' ±15% u'v' 

Table 2.2. Crosswire uncertainties, from Anderson and Eaton (1987). 

spatial resolution, as determined by the spacing of the wires, is necessarily poor. 
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Figure 2.1. Wind tunnel outline. 
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Figure 2.4. Rotating probe holder. 
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Chapter 3 

Near-wall Laser Doppler Anemometer 

3.1   Introduction 

A clear understanding of the near-wall behavior of velocities and Reynolds stresses 

is crucial to the future of predictive models for wall-bounded turbulent flows. Very 

few reliable Reynolds stress data exist below y+ = 100 for three-dimensional turbulent 

boundary layers, leaving open for speculation questions regarding the behavior of the 

shear stress angle compared to the mean strain angle, and the behavior of the shear 

stress magnitude. 

The scale of subsonic three-dimensional boundary layers studied in laboratory 

settings is somewhat restricted. In typical laboratory wind tunnels, the viscous length 

scale vjuT is around 10 — 40/xm. It would be desirable but costly to build larger- 

scale facilities with thick boundary layers. In order to capture flow physics in the 

viscous sublayer, the spatial resolution of the instrument — at least in the wall- 

normal direction — must be comparable to this length scale. 

Single-wire hotwires have been built with diameters as small as 0.6 /mi and active 

length 0.2 mm (c.f. Westphal et al, (1988)). Adding a second wire to capture shear 

stress information, however, necessarily increases the effective size of the interrogation 

volume. Even the smallest X-array hotwire probes can have wires spaced as much 

as 0.5 mm apart.  In three-dimensional turbulent boundary layers, the two relevant 

Reynolds shear stresses are u'v' and v'w'. The shear stresses measured directly by X- 

array hotwire probes are u'v' and u'w'; v'w' must be inferred from measurements from 

two positions, and therefore has high uncertainty. With conventional laser Doppler 

anemometry it is possible to overlap the measuring volumes for different velocity 

components. However, the smallest measuring volumes are typically 0.1 mm in di- 

ameter and as much as 1 mm long. These dimensions are to some extent a function of 
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the size of the experimental facility, since large-scale facilities generally require long ^ 

focal-length optics, which generate large measuring volumes. 

Johnson and Abrahamson (1989) proposed a near-wall laser Doppler anemometer 

for use in boundary layer flows. They relied on short focal-length optics and a mirror 

probe inside the flow to minimize probe volume. They reported mean velocities and 

normal stresses as close to the wall as 150 /xm. Their work is the inspiration for our 

laser Doppler anemometer. Ölcmen and Simpson (1994) presented preliminary data 

from another laser Doppler system which relied on short focal-length optics. They 

used inclined 60 fira diameter measuring volumes, relying on time-coincident measure- 

ments to measure three components of velocity, down to y+ = 4. They reported 7% 

repeatability in U/uT. Naqwi and Reynolds (1991) reported a measurement method 

which does not require high spatial resolution near the wall. They formed an inter- 

ferometric measuring volume with fringes whose spacing varied linearly with distance 

from the wall. The Doppler signal frequency was therefore proportional to |^. Use 

of such an instrument in a three-dimensional turbulent boundary layer would require "t 

the assumption that the flow is collateral near the wall. However, the velocity profiles 

measured to date cannot justify such an assumption. 

Laser Doppler anemometry is becoming an increasingly popular method to mea- 

sure turbulent flows, especially in regions of high turbulence intensity and reversing 

flows, since the method is generally non-intrusive. Durst et al. (1981) offer a fairly 

complete description of laser anemometry and its implementation. In its most com- 

mon form, a laser Doppler anemometer (LDA) consists of a pair of laser beams which 

cross at an angle a to form an interference pattern. Particles that are small enough 

to follow the flow pass through the crossing region, known as the measuring volume. 

A sensor collects light scattered from the particles, and the frequency of the collected 

"burst" signal is a function of the particle's velocity as follows: 

/ = u/A,    where   A = ——i. (3.1) ~ 
Ci Sill rt 

A signal processor is required to measure the dominant frequency in the scattered 

light signal for each burst. In order to resolve low or reversing velocities it is common 

to add a known offset to the frequency by frequency-shifting one of the two laser 
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beams. This is done using an acousto-optic modulator, called a Bragg cell. Another 

typical variation is to measure a second velocity component by introducing laser 

light of another color to generate a second measuring volume orthogonal to the first 

volume. The scattered light is split using a prism and color filters, and then each 

signal is processed separately to determine the two independent velocity components. 

Based on our need to understand the physics of the near-wall region of three- 

dimensional turbulent boundary layers, our aim was to develop and test a high spatial 

resolution, two-component laser Doppler anemometer which would simultaneously 

measure either the v and w velocity components or the u and v velocity components. 

Desirable secondary attributes were low cost and portability. The first task for the 

LDA would be to document the Reynolds stresses in a two-dimensional turbulent 

boundary layer, to validate its capabilities. 

The present LDA system was developed to make near-wall measurements in a 

wind tunnel which has a cross section of 2 ft x 3 ft and a boundary layer which has a 

viscous length scale v/uT of approximately 35/xm. This requires an LDA measuring 

volume with dimensions of the same order; a very difficult task given the long focal 

length optics implied by the scale of the test section. The LDA optics described below 

produce a measuring volume that is 35/mi in diameter and approximately 66^m long. 

This high resolution is achieved by placing the transmitting and receiving optics 

immediately below the test plate and reflecting the transmitted beams from a mirror 

which is suspended in the flow. This allows the use of short focal length lenses and side 

scatter collection, both of which serve to minimize the measuring volume. The use of 

a mirror within the flow seems like a simple solution. However, the very short focal 

length produces some complexity beyond that found in ordinary LDA systems. This 

chapter discusses our solutions to some of the more difficult problems, and provides 

data which demonstrate the utility of the system. 

3.2   The laser anemometer hardware 

Figure 3.1 shows a simplified sketch of the optical train for the LDA system. The 

light source is an argon-ion laser operated in single line mode at a wavelength of 
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514.5 nm (green), and at a power level of 2.5 W. The second optical element is a 

500 mm focal length "collimating" lens, to bring the laser beam to a second waist. A 

two-dimensional Bragg cell is placed near the second beam waist on a 3-axis rotation 

stage, and is used to split and shift the laser beam. Three useful beams exit the Bragg 

cell; all other beams are masked off. The first beam, unshifted, is a continuation of the 

beam which enters the Bragg cell. The second is shifted by 41 MHz, at a small angle 

/?4i to the side of the primary beam. The third, shifted by 40 MHz and at the angle 

/?40, exits below the primary beam. These beams will be made to cross to form two 

orthogonal measuring volumes. After exiting the Bragg cell, the beams pass through 

the 100 mm focal length transmitting lens and the horizontal test surface. Just above 

the test surface, they reflect off the mirror probe, a 1.0 cm x 1.0 cm mirror. This 

mirror and all other mirrors used have A/10 smoothness and are coated to optimize 

reflections at 45° incidence. 

The theory of Gaussian optics was applied to the analysis and design of the trans- 

mitting optics. The primary objective was to obtain a locally small beam radius 

("waist") and to place the waist at the beam crossing. We assume that the laser is 

operating in the TEMQQ mode, so the beam amplitude is a Gaussian function of its 

radius. The lenses preserve the Gaussian beam profile. 

The beam waist, w0, is defined as the radius of the laser beam at the location 

where the beam is locally smallest. At a distance r = ti>o from the center of the 

laser beam, the intensity (the amplitude squared) is e-2 times that at the center of 

the beam. The Rayleigh range, z0, is the length of the laser beam over which the 

beam's radius is no greater than y/2w0. The waist, wavelength, and Rayleigh range 

are related through the formula: 

w0 = ^. (3.2) 

The first beam waist is determined by the laser cavity geometry and its size is provided 

by the laser manufacturer. The rear mirror of a Lexel 95 laser is flat and is therefore 

the location of the first beam waist. The collimating lens is placed a distance S from 

this first waist. A second waist is formed a distance S' from the lens where S' is found 
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from the Gaussian beam imaging relation1: 

s' = f+(s-fy + z> (3-3) 

The Rayleigh range at this second waist is: 

(S - f? + zl **' = ,c     L ■ ,2 (3.4) 

The Bragg cell is placed near the second beam waist and has no effect on the beam 

diameter. The beam then passes through the transmitting lens and is focused to the 

final beam waist in the measuring volume. The distance to this waist is calculated 

using equation 3.3, and the Rayleigh range is calculated using equation 3.4. Finally, 

equation 3.2 is used to calculate the beam waist at the measurement position. 

It is essential that the beams cross to form the measuring volume where they are 

narrowest. To accomplish this we use the geometrical optics imaging relation: 

where s' is the distance from the transmitting lens to the beam waist, and / is the 

focal length of the transmitting lens. Solving for s, the distance from the Bragg cell to 

the transmitting lens, we place the Bragg cell such that the beams converge at their 

waists after the transmitting lens. We also check that this Bragg cell placement puts 

the Bragg cell within the Rayleigh range of the second waist. The lens positions were 

chosen iteratively to obtain the desired measuring volume size. The final parameters 

of the LDA system are shown in table 3.1. 

Conventional LDA systems use beam steering to force the measuring volumes to 

coincide, but that is not required here because the beams emanate from a single point 

and encounter all the same optical components, so they automatically converge to the 

same point. 

The measuring volume is formed by beams crossing at the relatively small angle 

of approximately 2°, which has two effects: the fringe spacing is large (14.7/zm) and 

the measuring volume is long. The fringe spacing is large compared to the measuring 
1We use the sign convention that S > 0, S' > 0, and /> 0, as in figure 3.2. 
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coordinate [m] WQ [mm] ZQ [mm] 
Back mirror of laser 
CoUimating lens 
Bragg cell 
Second waist 
Transmitting lens 
Third waist 

0 
1.138 
1.649 
1.661 
2.461 
2.575 

0.650 

0.122 

0.0173 

2580 

90.9 

1.83 

parameter length [m] 
Laser wavelength A 

Focal length collimating lens 
Focal length transmitting lens 

514.5 e-9 
.500 
.100 

Table 3.1. Optical parameters and coordinates of transmitting optics. 

volume diameter, but there is a significant bias velocity added by the frequency 

shifting. For a particle which passes through the widest part of the measuring volume, 

the number of cycles in a burst is 

»r   i       \" Bragg       /downmixj 

A U 
(3.6) 

so a velocity of 10 m/s would have a burst of at least 12 cycles. 

The measuring volume length is effectively reduced by using side-scatter receiving 

optics. The receiving lens has a focal length of 30 mm and is positioned 40 mm away 

from the measuring volume to achieve 3x magnification. The collection fiber tip is 

placed 120 mm below the receiving lens, at the location of the magnified image of 

the measuring volume (satisfying equation 3.5). The fiber tip is the field stop — 

the stop which limits the angle of rays emanating from off-axis. The image of the 

field stop in the object plane is the entrance window, which limits the extent of the 

measuring volume which can be detected by the receiving fiber, as illustrated in figure 

3.3. Since the fiber diameter is 200 (im and the system magnification is 3, the size of 

the entrance window is 66^/m. Note that side-scatter collection efficiency is low, so 

this is one source for a low data rate. 

Generally in laser Doppler anemometry, we consider the wave fronts of the laser 

beam to be planar. When the beam waist is small and the beams cross at a small 

angle, we can no longer consider the wave fronts to be planar, and the wave radii 
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change over the length of the measuring volume. Consider figure 3.4, which is a 

cartoon of two laser beams crossing at their waists. The wavefronts far from the 

waist behave as though they emerge from a point source at the waist. Interference 

fringes, which appear as dark vertical lines, are formed by the superposition of the 

fields from the two laser beams. The figure illustrates that the interference fringe 

spacing varies with the closest spacing at the waist. In practice, we are able to 

interrogate a small portion of this measuring volume, so we scan the length of the 

measuring volume to find the point of local maximum measured velocity. This is the 

location of minimum fringe spacing.2 The fringe spacing varies as much as 5% along 

its length, so it is easy to discern changes in fringe spacing. The measuring volume is 

inclined, so we perform this scan near the uuper limit of the LDA's travel to minimize 

the variation in U along the measuring volume. This variation is only about 0.1%, so 

it does not interfere with our finding the beam waists. 

The practical optical setup is shown in figure 3.5. The components are mounted 

to three distinct bases. The first is an optical table that sits below the wind tunnel 

test section, holding the laser, collimating lens, and Bragg cell. A small wall-normal 

traverse mounted inside the wind tunnel below the test surface holds the transmitting 

lens and receiving optics. The proximity of the lenses to the test surface limits the 

wall-normal traversing range to approximately 25 mm. The mirror probe is suspended 

from the top of the test section on a second traverse. The mirror is 54 mm off-axis, 

and does not cause measurable disturbances to the flow. For wall-normal traversing 

we do not move the bench; consequences of this are discussed in section §3.4. 

In order to obtain the third velocity component, the measuring volumes may be 

rotated by 90° about a vertical axis through the measurement location. The lens 

mount allows the transmitting lens to be rotated about the vertical axis. The mirror 

probe has a spring-loaded tip, as seen in figure 3.7, which allows it to be rotated 

easily.   With the two configurations, we directly measure the mean velocity, the 

Reynolds normal stresses, and the u'v' and v'w' shear stresses. A 45° rotation is also 

possible, for extracting information about u'w', but we took no data at this position. 
2If the beams do not cross at their waists, the fringe spacing will vary monotonically along the 

length of the measuring volume. The fact that we find a local maximum velocity indicates that the 
beam crossing does coincide with the beam waist. 
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The hardware is also equipped with the ability to easily translate to three alternate 

positions in order to measure streamwise and spanwise derivatives. Jigs on the optical 

bench allow for movement of the vertical axis (see figure 3.6); optional mounting holes 

for the small traverse allow for its translation. The probe tip mechanism rotates about 

a secondary vertical axis and locks in place at four different positions. 

The light is collected into a 200 micron diameter fiber optic cable, which interfaces 

to a photomultiplier tube (PMT). A pair of RF amplifiers in series converts the 

PMT current to a measurable voltage and a downmixer subtracts 38 MHz from the 

signal. The amplified and downmixed signal is passed through an 8 MHz 8-pole 

LC Butterworth low pass filter. The downmixed signal contains the frequencies 

corresponding to two components of velocity, one centered at 2 MHz (40 MHz Bragg 

shift — 38 MHz downmix) and the other centered at 3 MHz. 

The filtered signal is analyzed by a Macrodyne 3102 frequency-domain LDA signal 

processor, which finds the frequency components in user-specified frequency ranges. 

The concept of using one frequency-domain processor for multiple velocity compo- 

nents was suggested by Johnson (1990) as a way to significantly reduce cost in LDA 

systems. The two components are distinct because the lower-frequency signal always 

remains significantly below 3 MHz. The signal processor passes frequency informa- 

tion from each burst to an IBM PC via GPIB. Specific components for the LDA are 

listed in table 3.2. 

3.3   Operating procedures 

We align the optics such that the primary (unshifted) beam forms 90° angles at 

all mirror interfaces except at the final mirror, intersects the center of the Bragg cell 

as defined by the Bragg cell's apertures, and intersects the transmitting lens at its 

center. This alignment minimizes cross-contamination between velocity components. 

The receiving fiber is mounted on a three-axis stage allowing accurate positioning 

of the fiber tip. The position in the horizontal direction perpendicular to the trans- 

mitted beams is chosen by moving the fiber tip to obtain the maximum data rate. 

Translating the fiber tip in the direction along the beam path means interrogating 
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different sections of the long measuring volume. We choose this location by scanning 

the fiber tip with the tunnel running and finding the location where the fringe spacing 

appears to be a minimum. We use a small port in the tunnel's floor to gain access 

to the knobs. We find that it is not possible to maintain alignment if we remove and 

replace a surface through which the beam passes. 

Locating the wall with the measuring volume is done with the tunnel running at 

test speed, since everything exhibits small deflections in the presence of the flow. We 

translate the system in the wall-normal direction with the laser power set very low 

until a sharp image of the measuring volume is visible, centered on the tip of the 

fiber, and clear signal from both channels is obtained, indicating that the measuring 

volume is scattering off the wall. 

Seed particles are introduced in the return leg of the closed circuit wind tunnel, 

upstream of the blower. The seed particles are titanium dioxide (diameter « l^m), 

carried in a solution of ethyl alcohol, and propelled by compressed air at about 40 

psig through an airbrush. The container of Ti02-alcohol mixture is kept on a mag- 

netic stirrer to maintain the suspension. We found that using pure alcohol was best: 

the particles are hydrophilic and tend to agglomerate when in 99% alcohol. The 

seeding system is run continuously during data acquisition. Due to the extremely 

small measuring volume, seeding is critical and the maximum data rate achieved was 

approximately 50 Hz. One positive side effect of low data rate is that it is extremely 

unlikely to measure multiple particles in one time window. This is borne out by our 

observations of the individual bursts. 

3.4   Data reduction 

The most difficult problem with the present LDA system is that we do not know 

the fringe spacing precisely. With the two-dimensional Bragg cell we cannot predict 

exactly at what point within the Bragg cell the beams will diverge. This point is 

determined by both the angle of the Bragg cell and the driver power level. Also, as 

discussed above, the fringe spacing depends on the positioning of the receiving optics 

since the fringe spacing varies along the length of the measuring volume. Therefore, 
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we are forced to calibrate the fringe spacing against known velocity data. The Bragg 

cell settings are held fixed throughout the study. The receiving optics' alignment is 

held fixed for each velocity profile. For three-dimensional boundary layers we match 

the U and W mean velocities to the the velocity measured with a three-hole probe, 

using the outermost point to match U and a point near the peak W (specifically at 

y = 1.6 mm) to match W. To fix the V fringe spacing we match measurements of v'2 

from a cross wire over the range 7 mm < y < 16 mm. 

Traversing in y alters the fringe spacing slightly, as a consequence of not moving 

the Bragg cell. We calculate the fringe spacing as a function of y using geometrical 

optics. The fringe spacing changes by only 3% over the operating range of the LDA 

because the transmitting lens is placed very far from the Bragg cell. 

Figure 3.8 shows the laser beam orientations for the two main configurations. The 

measuring volumes are pitched toward the wall by 6°, resulting in a small contami- 

nation of each velocity component by the other components. Transformation of the 

data into the wind tunnel coordinate system is straightforward. Details are discussed 

in Appendix B. There is a small contribution of u'w' to some of the other Reynolds 

stresses. For a two-dimensional boundary layer these contributions are zero, but for a 

strongly skewed three-dimensional turbulent boundary layer u'w' can be larger than 

t/üj7. We chose not to measure u'w', so we cite the following offsets: vn is off system- 

atically by 3% of HFÜ7, and the ÜV and v^w' shear stresses are off by approximately 

10% of u'w'. These estimates are discussed in detail in Appendix B. 

As a final step in processing the data, we correct for small errors in locating the 

measuring volume relative to the wall. A small offset, not exceeding 80/mi, is added 

to the y value for each point. The offset is chosen to minimize the mean squared 

difference from u+ = y+ for the data points below t/+ = 7. 

3.5   Validation in a two-dimensional boundary layer 

We present data from the LDA along with crosswire and pressure probe data for 

comparison. These data are for a two-dimensional turbulent boundary layer, with 

Reynolds number based on momentum thickness of approximately 3800.  Table 3.3 
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lists the descriptive parameters for the boundary layer, as calculated from the pressure 

probe data. We use the experimental facility described in Chapter 2, with the wedge 

removed and the fairing extended to cover the space left by the wedge. Data are 

acquired on the centerline of the tunnel, 129.3 in downstream of the leading edge of 

the test surface. The freestream velocity is 12.5 m/s. 

Figure 3.9 shows the mean velocity measured by the LDA and compared to data 

from the three-hole pressure probe. Two independent sets of LDA data are presented. 

The agreement is good: maximum deviation between the LDA and pressure data is 

approximately 0.05 m/s. 

The LDA data are compared to crosswire measurements of the normal stresses 

in figure 3.10 and the shear stress in figure 3.11. All of the data are normalized 

using the friction velocity inferred from the pressure probe mean velocity measure- 

ments. We observe the expected peak in un stress around y+ = 10. The wn stress 

has greater scatter in the region below y+ = 20; this may indicate that we have a 

small error in the height of the (U,W) volume. The u'v' shear stress reaches a peak 

somewhere between y+ = 80 and y+ — 100. This agrees qualitatively with the ex- 

pected behavior, though there are few data sets to compare to our near-wall data. 

The v'w' shear stress measurements are plotted alongside the u'v' shear stress. In a 

two-dimensional boundary layer, v'w' is zero, so both instruments demonstrate small 

errors by measuring non-zero correlations between v and w. 

3.6   Uncertainty analysis 

The first consideration in the uncertainty analysis is the statistical uncertainty due 

to a finite sample size. Typically, we acquire at least 5000 samples per point, calculate 

the mean and standard deviation, then discard the data outside 3a to remove any 

extraneous data, and recalculate the statistics. The statistical uncertainty in the 

mean at 95% confidence is then 2.8% of the standard deviation, which amounts to 

less than 1% of the mean velocity even in the region of highest relative turbulence 

intensity. The statistical uncertainty in the Reynolds stresses is approximately 4% of 

the measured stress. 
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Velocity bias occurs when the arrival rate of particles is correlated to the velocity. 

Mean velocity measurements can be significantly biased where the turbulent fluctu- 

ations are high. Gould and Loseke (1993) described four techniques to correct for 

this velocity bias. They recommended a correction scheme based on generating a 

Gaussian pdf shape, which is perhaps inappropriate for wall-bounded turbulence, but 

they also recommended that no correction scheme be implemented below a turbulence 

intensity ^j^- of 15%. We recognize that our uncorrected data may exhibit some ve- 

locity bias below y+ = 30, where *^- > 15%. Adams, Eaton, and Johnston (1984) 

also quantified the effects of velocity bias, stating that velocity bias is strongest in 

regions of both high mean velocity and high turbulence. They developed a "worst 

case" analysis of velocity bias. Applying their analysis to the present 2D boundary 

layer data yields a peak error in the measured U of 0.8uT at y+ = 7. Their analysis 

is excessively conservative and the true bias errors are likely to be much smaller. 

Finally, we must consider the effect of the finite spatial extent of the measuring 

volume. A detailed analysis of this effect is presented in Appendix C. The error in 

mean velocity is proportional to d?%p£- while the error in Reynolds normal stress is 

proportional to <P |2 (f^)* + ^ . Using Spalding's (1961) law of the wall equation 

and Spalart's (1988) two-dimensional boundary layer data, we find that the error 

due to the finite extent of the measuring volume is responsible for peak errors of 

approximately 0.1uT
2 in the normal stresses, and of 0.003uT in the mean velocity near 

the wall. 

3.7   Conclusions 

The new LDA has proven to produce accurate mean velocity and Reynolds stresses 

well into the viscous sublayer of a moderate Reo two-dimensional boundary layer. In 

addition, the use of the two-dimensional Bragg cell to do both beam splitting and 

frequency shifting, and the use of a single frequency-domain processor have lowered 

the cost of the LDA substantially. Several factors make the LDA difficult to use. The 

biggest problem is the non-uniform fringe spacing, requiring careful alignment of the 

receiving optics and calibration of the LDA system. In addition, the small measuring 
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volume size and side-scatter receiving lead to low data rates. 
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Item 
laser 
optical bench 
2D Bragg cell 
Bragg cell drivers 
photomultiplier tube 
PMT power supply 
RF amplifier unit 
downmixer 
collimating lens 
transmitting lens 
receiving lens 
probe mirror 
other mirrors 
optical fiber 
LDA processor 
airbrush (for seed) 

Brand and model 
Lexel 95-4 

Newport XSN-14 
Intra-Action F2M40/45 

Intra-Action ME-40 
Thorn EMI model 9818B 

Thorn EMI model PM28RA 
Avantek GPD-201 

TSI 9186 
Melles Griot 01LA0346 achromat 
Melles Griot 01LA0123 achromat 
Melles Griot 01LA0024 achromat 

Melles Griot 02MPG002/001 
Melles Griot 02MPG001/001 

Newport UV-NIR cable 
Macrodyne FDP3102 

Paasche-H 

Table 3.2. Specific equipment for LDA. 

Cf/2 0.001582 
uT 0.5015 m/s 
Ue 12.61 
Ree 3792 
Res* 5267 
H 1.389 

Table 3.3. Two-dimensional boundary layer parameters. 
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a K 

A. Laser 
B. Collimating lens, f .500 m 
C. 2D Bragg cell 
D. Transmitting lens, f .100 m 
E. Test surface 
F. Mirror probe 
G. Measuring volume 
H. Receiving lens, f .030 m 
J. Fiber tip 
K. PMT 

Figure 3.1. LDA optical path: sketch of essential elements. 
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Figure 3.2. Gaussian beam propagating through a lens. 

A. Measuring volume 
B. Receiving lens (f=30mm) 
C. Receiving fiber 
D. Focus 
E. Aperture stop 
F. Field stop 
G. Entrance window 

Figure 3.3. Stops in receiving optics. Vertical scale exaggerated. 
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Figure 3.4. Fringe illustration. 
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Flow 

J,  <c 
_g-~ = 5* ^ fc.F 

E 

. Laser 
B. Collimating lens, f= .500 m 
C. 2D Bragg cell 
D. Transmitting lens, f= .100 m 
E. Test surface 
F. Mirror probe 
G. Measuring volume 
H. Receiving lens, f= .030 m 
J. Fiber tip 
K. PMT 

Figure 3.5. LDA optical path. Not to scale. 
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from laser A. First mirror 
B. 2D Bragg cell 
C. Removable mirror (for rotation) 
D. Probe axis 
E. (v,w) mirror 
F. (u,v) mirror 
G. Plate for mirrors and Bragg cell 
H. Positions for plate G 
J. Positions for mirror A 

Figure 3.6. Detail of optical bench, indicating options for (x,z) translation and system 
rotation. 
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W 

$ 

Figure 3.7. Mirror probe detail, (a) Probe (b) Mechanism section detail. 
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TOP VIEW 

(U,V) Position 

f umeas 

+41 MHz 

"unshifted 

SIDE VIE 

unshifted 

+40 MHz 

TOP VIEW 

(V, W) Position 

,J i^tieas 

L- unshifted 

'+41 MHz 

SIDE VIEW 

unshifted 

+40 MHz 

Figure 3.8. Beam orientations for measuring volumes. 
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Figure 3.9. Mean velocity (2D): LDA vs pressure, scaled on uT 
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Figure 3.11. Shear stress (2D): LDA vs crosswire. 



Chapter 4 

Mean Flow Results 

This chapter presents the mean velocity field in the three-dimensional turbulent 

boundary layer. We acquired profiles at several distinct locations in the bound- 

ary layer, and profile locations referred to in this chapter are indicated in figure 2.5 

and in table 4.1 below. Profiles of mean velocity were acquired using the three-hole 

probe, the crosswire probe, and the LDA. We use the three-hole pressure probe data 

and the static pressure distribution to determine the global features of the boundary 

layer, then use the LDA data to describe the near-wall behavior. Most of the data 

are presented in the tunnel coordinate system, aligned with the upstream boundary 

layer. 

x' \  z 0 -3.5 
0 A 
7 C 
10.5 D DD 
14 E EE 
17.5 F FF 
21 G GG 
26.5 H 

Table 4.1. Profile location labels (dimensions in inches). 

4.1   Static pressure field 

The static pressure distribution is represented in terms of the pressure coefficient 

in figure 4.1. 

CD = 
\pUief

2 (4.1) 
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where prCf and J7ref are the static pressure and freestream velocity at (x',z) = (0,0). 

The data are plotted along lines of constant z with the two lines selected for detailed 

study (z = 0 and z = -3.5 in) highlighted. In this coordinate system, z = 0 is the 

tunnel centerline and the wedge is on the — z side of the tunnel. The leading edge 

of the wedge is at x' = 17 in. The pressure rises approaching the wedge for negative 

values of z. Along the centerline, the pressure is nearly constant until approximately 

x' = 17 before falling off as the area narrows and the flow accelerates past the wedge. 

There is a strong spanwise pressure gradient upstream of the wedge, which acts 

to turn the flow into the angled exit passage. The freestream turning angle (as found 

using the three-hole probe) is depicted in figure 4.2. In the region where we measure 

boundary layer profiles, the turning angle varies from 0 to 14.5°. Along the z = —3.5 

line, the flow is turned more strongly than along the z = 0 line. 

Figure 4.3 presents the derivatives of the static pressure in the tunnel coordinate 

system, normalized by £99 at (x',z) = (10.5,0). The derivatives were calculated 

from the Cv data displayed in figure 4.1. We derived a central difference formula for 

unevenly spaced data, by fitting a parabola through three points: 

<jf_ _ (gj-i ~ s»)2(/«+i ~ fi) ~ (*»•+! ~ s«)2(/.-i ~ fi) u 2) 
dx(x=Xi)        (Xj-1 - Xi)2(xi+1 - Xi) - (xi+i - Z,)2(Xj_i - Xi) 

dcp\ 
dx    ' The plot shows that for most of the boundary layer, -gf is greater than 

demonstrating that we have accomplished the goal of generating a flow dominated 

by the spanwise pressure gradient. The streamwise pressure gradient is nearly zero 

through the fourth measurement station (E) along the centerline and remains small 

up to the fifth station. The pressure gradient is initially mildly adverse along the 

z = —3.5 line then crosses zero near the wedge tip. The pressure gradient is strongly 

favorable beyond the wedge tip for both measurement lines. 

Figure 4.4 shows the pressure gradients in the coordinate system aligned with 

the local freestream. The streamwise pressure gradient in this coordinate system, 

^of, is small compared to -^, except toward the exit where the pressure gradient 

is predominantly streamwise.1 We note that along the z = —3.5 line the streamwise 

pressure gradient is initially adverse, but becomes favorable beginning with station 
xWe have defined (s, y, n) coordinates to be right-handed, a rotated version of the (x, y, z) tunnel 
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FF. Along the z = 0 line the streamwise pressure gradient is favorable from station 

F downstream. At the locations where we acquire pressure profiles, the strongest 

curvature is at station EE, where £99-5^ = 0.042 and £99-5^ = 0.004. This is 

stronger turning than in the experiment of Schwarz and Bradshaw, which had a 

maximum £99-9^ w —0.032. The study of Anderson and Eaton had stronger turning 

and stronger acceleration: their £99-5^ w —0.1, with -§£ approaching 80% of -^f. 

They cited a non-dimensional turning ratio S/R which reached as high as 0.055. 

4.2   Three-hole probe profiles 

Profiles were acquired with the three-hole probe at all eleven stations tabulated 

in table 4.1. Profiles at z = 0 are plotted separately from profiles at z = —3.5. 

The resulting velocity magnitude profiles are featured in figures 4.5 and 4.6, which 

show that the boundary layer is accelerated only mildly, and show the boundary layer 

thickness increasing. We see the profiles growing "fuller" in the favorable pressure 

gradient region, with relatively higher velocities near the wall. The boundary layer 

skewing is represented in figures 4.7 and 4.8. The turning angle 7 — ß is positive, 

indicating that the flow near the wall is rotated at a greater angle than the freestream, 

as should be expected. At the farthest downstream stations (H and GG), the skewing 

through the boundary layer is as much as 24 degrees. It is interesting to note that 

the turning angle actually decreases approaching the wall at these two measurement 

stations. This is related to the rapid reduction in the cross stream pressure gradient. 

We align local axes with the freestream and break the velocity into local stream- 

wise and spanwise components, Ua and Un: 

Us   =   t/cosß + Wsin/3 (4.3) 

Un   =   Wcos/?-£/sin/?. (4.4) 

The streamwise component is represented in figures 4.9 and 4.10.    Figures 4.11 

coordinates. This makes n point inward toward the center of curvature, which is not consistent with 
the usual casting of the Euler's equation in streamline coordinates. 



= 2/?(l-g) (4.5) 
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and 4.12 show the spanwise component, which is seen to reach a maximum at in- 

creasingly large y values. The maximum spanwise velocity is as much as 28% of the 

freestream velocity. We also represent the mean velocities using a "hodograph", seen 

in figures 4.13 and 4.14. This plot shows the spanwise component of velocity as a func- 

tion of the streamwise component. The hodograph accentuates the near-wall region's 

absence in the three-hole probe data. Figures 4.15 and 4.16 compare the outer part of 

the boundary layer to the angles predicted by the inviscid Squire-Winter-Hawthorne 

(SWH) theory (see, for example, Squire and Winter (1951)), which implies that for 

small freestream turning angles, the slope of the outer edge of the hodograph is 2ß: 

Un       na(*       Us 

Ue 

The data for the upstream stations (A - D) follow reasonably straight lines although 

there is small disagreement between the measured jf- and the jf- implied by SWH. 

Further downstream, the data exhibit some curvature. This curvature is an effect of 

the streamwise pressure gradient, which is not accounted for by SWH. 

There has been considerable debate as to whether it is appropriate to expect a 

"law of the wall" for three-dimensional boundary layers. Figures 4.17 and 4.18 are 

a relatively unbiased representation of the fit to the law of the wall. To calculate 

the friction velocity, QT, we assume that the law of the wall holds for the velocity 

magnitude: 

Q/Qr = -ln(yQT/v) + B (4.6) 
K 

We use the values generally accepted for two-dimensional boundary layers, K = .41 

and B = 5.0. Our analysis program iterates to find a region between y+ = 40 and 

y+ = 150 where the value of QT found from the law of the wall is constant. The 

profiles are shown against equation 4.6. All the profiles tend to rise above the line 

slightly at first, then dip below it. They then rise well above the line to form a "wake" 

region. The upstream boundary layer (station A) agrees qualitatively with the mean 

flow reported by Murlis, Tsai and Bradshaw (1982) for a two-dimensional boundary 

layer at similar Ree. The furthest downstream profiles are severely distorted. They 

may be contaminated by flow that has swept across from near the wedge-floor corner. 

We use the friction velocity to find the wall skin friction and thus the skin friction 
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coefficient, Ct 
2        To        CjUl 

The skin friction coefficient is the quantity chosen for non-dimensionalizing other 

profiles at the same location. Figure 4.19 shows the skin friction determined in this 

way, compared to the analytically predicted value for two-dimensional boundary layers 

(Kays and Crawford (1980) equation 10-20), 

Cf/2 = 0M25Ree-°-25. (4.8) 

The good agreement between the measured and predicted C/ at small turning angles 

indicates that we may expect some two-dimensional correlations to work in this region 

of three-dimensionality. The points farther downstream have skin friction coefficients 

greater than the two-dimensional correlation, indicating the favorable streamwise 

pressure gradient's influence on the mean velocity profiles. 

The boundary layer integral parameters from the pressure data are tabulated 

in table 4.2. The displacement thickness is based on the streamwise velocity Ua, 

since there is no true physical analogy for three-dimensional boundary layers for a 

displacement thickness based on Q. The displacement thickness, 8*, is also known in 

three-dimensional turbulent boundary layer literature as 8$, where 1 denotes the mass 

flow in the streamwise direction. Similarly, for the momentum thickness 6 we choose 

the streamwise momentum, and in other works this quantity is sometimes called On. 

'-nK1-!!)* (4-io) 
To aid in integration, we first fit a natural cubic spline to the velocity data, then inte- 

grate that spline. The ratio between the displacement thickness and the momentum 

thickness is called the boundary layer shape factor, H. 

H = j (4.11) 
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Profile 

A c D E F G H DD EE FF GG 

M 0.0 7.0 10.5 14.0 17.5 21.0 26.5 10.5 14.0 17.5 21.0 

[«■»] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -3.5 -3.5 -3.5 -3.5 

ß 
[deg] 0.14 1.81 3.52 5.63 7.90 10.57 14.36 3.98 6.86 10.40 14.16 

Qe 
[m/s] 12.43 12.40 12.40 12.37 12.35 12.47 13.08 12.23 12.14 12.13 12.34 

#99 
[mm] 36.3 38.5 41.6 43.1 45.2 49.5 56.5 38.9 41.9 44.7 49.3 

6* 
[mm] 5.78 6.24 6.74 7.13 7.60 8.51 9.52 6.43 7.00 7.78 8.90 

e 
[mm] 4.22 4.56 4.90 5.19 5.53 6.19 7.04 4.67 5.06 5.61 6.19 

H 1.37 1.37 1.38 1.38 1.38 1.37 1.35 1.38 1.38 1.39 1.44 

Res* 4692 5058 5458 5766 6136 6931 8139 5160 5570 6186 7200 

Ree 3431 3693 3968 4192 4460 5047 6016 3746 4031 4457 5009 

Qr 
[m/s] 0.506 0.499 0.491 0.489 0.488 0.500 0.558 0.490 0.482 0.484 0.504 

C//2 
xlO-3 1.66 1.62 1.57 1.57 1.56 1.61 1.82 1.60 1.58 1.59 1.67 

Table 4.2. Boundary layer parameters from pressure data. 
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4.3 Crosswire and three-hole probe data compared 

The hotwire mean velocity magnitude data are compared to the pressure data for 

two different profiles, in figure 4.20. This figure indicates that the hotwire data agree 

well, within 0.03 Q/Qe- There is some discrepancy near the wall, indicating either 

an error in the distance from the wall of the crosswire (a correction of 0.9 mm would 

significantly improve the agreement) or overprediction of the velocity magnitude near 

the wall. The hotwire probe was aligned with the local flow direction previously 

measured using the three-hole probe. Thus, the flow angle was assumed to be the 

same, as is common practice. 

4.4 The near-wall mean flow: LDA data 

Now we describe the inner part of the boundary layer, using the LDA profiles. 

Profiles were acquired with the LDA at seven stations (D, E, F, G, DD, EE, and 

FF). We begin by comparing the LDA data to the three-hole data. Figures 4.21 and 

4.22 show the streamwise and spanwise velocity profiles at two locations, showing 

the agreement between the instruments. In Chapter 3 we decribed the LDA fringe 

calibration method, in which U is matched to the outermost three-hole probe point 

and W is matched where W is relatively large. This calibration is the cause for the 

good fit at the edge of the LDA data in figure 4.21 and the good fit near the peak 

crossflow in figure 4.22. The maximum deviation in the velocity magnitude between 

LDA data and the pressure probe data is approximately 0.015Qe- 

The boundary layer skewing is represented in figures 4.23 and 4.24. For the most 

part, 7 — ß increases monotonically toward the wall down to about y+ = 20. Along 

the z = 0 line the angle is approximately constant below y+ = 20 indicating the 

presence of a near-wall collateral region. At the most downstream location (G) the 

trend of the angle reverses below y+ = 20 with the angle decreasing toward the wall. 

The flow angle data show considerable scatter in the one or two points nearest the 

wall. This is because different LDA setups are used to measure the U and W velocity 

components. A slight offset in the vertical positioning can result in significant error 
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in the angle because of the steep velocity gradients near the wall. The angle trends 

for the profiles along z = —3.5 are not as clear. All three profiles show a monotonic 

increase in the flow angle approaching the wall above y+ = 10. The trend below 

that point is inconsistent, possibly due to high uncertainty. The furthest downstream 

profile may be affected by flow sweeping over from the wedge corner. 

The hodographs (figures 4.25 and 4.26) show clearly that the LDA has captured 

the near-wall behavior of the mean flow, with the profiles extending toward the origin. 

These plots show an approximately triangular shape. The three-hole probe data are 

plotted alongside the LDA data. These coordinates tend to highlight differences 

between the two instruments, since errors in Un are accentuated. There is excellent 

agreement between the LDA data and the three-hole probe data throughout most of 

the boundary layer. Near the inner edge of the pressure profiles, agreement is not as 

good, most likely due to small angle errors in the three-hole probe data as the probe 

approaches the wall. 

Figures 4.27 and 4.28 represent the LDA data in the log-law coordinates. In 

reducing the data, we determined the wall offset by optimizing the data's fit to u+ = 

y+ (as discussed in detail in Chapter 3), so we should not be too surprised by the 

profiles' collapse in this region. 
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Figure 4.1. Static pressure distribution near the wedge. 
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Figure 4.2. Freestream turning angle at all profile locations. 
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Figure 4.3. Static pressure derivatives with respect to x and z, normalized by £99 at 
(*',*) = (10.5,0). 
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Figure 4.4. Static pressure derivatives with respect to s and n, normalized by £99 at 
(x',z) = (10.5,0) 
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Figure 4.5. Dimensional velocity magnitude, z = 0. Staggered axis; ticks on right 
axis indicate 12.5 m/s. 



80 

14 T—i—r—|—i—i—i—i—|~~i—i—i—i—|—i—i—i    r 

-o Ö 

-v v 

A A A 

O 0 O 

DD 
EE 
FF 
GG 

i      i    -i      I      i      i      i      i      I I I I I 1 1 1 1 L 

20 40 

y [mm] 

60 80 
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Figure 4.13. Hodograph. z = 0. 
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Figure 4.15.     Comparison of hodograph to angles predicted by Squire-Winter- 
Hawthorne theory, z = 0. 
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Figure 4.17. Law-of-the-wall representation, z = 0. Staggered axis. 
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Figure 4.18. Law-of-the-wall representation, z = —3.5. Staggered axis. 
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Figure 4.21. LDA data compared to three-hole probe data: Streamwise velocity. 
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Figure 4.27. Law-of-the-wall representation, LDA data, z = 0. 



102 

25 

20 

+ 
O 

i i i uii| 1—i i i iiii| 1—i i 111111 r 

DD 
EE 
FF 

Lines: 
Q+ = 2.44 In y+ + 5.0 
Q+ = y+ 

■   '■'' '"I i i i 11 ml 

10 10* 10^ 

y+ 

Figure 4.28. Law-of-the-wall representation, LDA data, z = —3.5. 



Chapter 5 

Turbulence Results 

In this chapter we discuss the turbulence quantities in the three-dimensional turbulent 

boundary layer, as measured by the LDA and by the crosswire. We examine the 

components of the Reynolds stress tensor and at the angles of stress and strain. We 

also discuss some turbulence modeling quantities. The triple products were calculated 

and are included in the tabulated data but are not presented here; they are used 

in calculating vertical transport velocities and Reynolds stress transport equation 

balances, presented in the following chapter. 

Data are presented for stations D, E, F, G, DD, EE, and FF, as indicated in figure 

2.5 and table 4.1. The data are grouped into two sets: the four stations at z — 0 

and the three stations at z = —3.5. The latter are the more strongly turned profile 

locations. We present the data in the coordinate system aligned with the wind tunnel. 

5.1   Reynolds normal stresses 

The Reynolds stresses are normalized by the friction velocity, and plotted in pro- 

files as functions of y+, in semi-log coordinates to emphasize near-wall features. The 

crosswire data are plotted alongside the LDA data, to complete the profiles. 

Figures 5.1 and 5.2 show the un normal stress consistently reaching a peak near 

y+ = 10. Similar peak locations and values have been found in two-dimensional 

boundary layer studies (see, for example, Purteil et al. (1981) or Spalart (1988)). 

This peak diminishes in amplitude at the farthest downstream stations. Station FF 

demonstrates the suppressed values of un in this region quite strongly, though the 

data are not spaced closely enough to determine the exact location and magnitude of 

the peak. There is a plateau in u'2 centered around y+ = 100 followed by a rapid drop 

to nearly zero at the edge of the boundary layer. The fall-off happens at increasing 
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values of y+, as occurs with increasing Reynolds number in two-dimensional boundary 

layers. There appears to be general collapse between all the data in the region below 

y+ = 10. The agreement is quite good between the LDA data and the crosswire data 

in the region where the two datasets overlap. This comparison is sensitive to error in 

fringe spacing (A), since the measured Reynolds stresses are proportional to A2. 

The vn normal stress is displayed in figures 5.3 and 5.4. This stress is considerably 

smaller than u12, and again takes on a profile shape similar to va for two-dimensional 

boundary layers. There is an excellent collapse of the data scaled in wall coordinates. 

The three-dimensionality does not have a strong effect on vn, but the data do indicate 

that there is a small increase in vn in the further downstream stations. 

Figures 5.5 and 5.6 show the wn normal stress. The upstream profiles look similar 

to two-dimensional boundary layer v/* profiles, with the highest point around y+ = 50 

and a steep drop off at the outer edge of the boundary layer. As the flow develops, 

the level of wn gradually increases. A peak appears near y+ = 10 as the mean 

three-dimensionality develops. The peak in the u'2 stress diminishes as the flow 

develops, though, so it is possible that we are seeing the "streamwise" peak in rotated 

coordinates. The agreement between the LDA and crosswire data for v/1 is not as 

good as for un. 

Also included are the crosswire data normalized by the "outer" parameters Uref 

(= 12.5 m/s) and 899, in figures 5.7 and 5.8. These plots are dominated by the 

wake behavior of the boundary layer and show and excelled; collapse in outer layer 

coordinates. 

5.2   Turbulent kinetic energy 

Figures 5.9 and 5.10 show the development of twice the turbulent kinetic energy, 

plotting q2 = un + vn + w12 against y+. The turbulent kinetic energy is coordinate- 

invariant. It is clear that q2 begins at zero at the wall, reaches a peak near y+ = 10, 

falls to a plateau approximately in the range 40 < y+ < 300, and falls off steeply at the 

edge of the boundary layer. We see a few trends with increasing three-dimensionality. 

Most notably, the plateau region appears to grow flatter. At station FF, there is even 
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a local minimum in q2 near y+ = 100. In the outer part of the boundary layer, we see 

a mild increase in turbulent kinetic energy with increasing three-dimensionality. In 

the inner part of the boundary layer (below y+ = 100) the trend is not as marked, but 

the turbulent kinetic energy seems to decrease with increasing three-dimensionality. 

5.3   Reynolds shear stresses 

One of the strengths of this study is our ability to directly measure the — u'v' 

and — v'w' shear stresses with the near-wall LDA. We chose not to measure the less 

important u'w' stress with the LDA, but do have u'w' data from the crosswire. Figures 

5.11 and 5.12 show the streamwise — u'v' shear stress.   This shear stress does not 

collapse as well in the region y+ < 10 as the normal stresses do. Collapse of — u'v' 

in the near-wall region is not necessarily expected, since the streamwise pressure 

gradient will affect the shear stress. We note that there is a distinct decrease in — u'v' 

with increasing three-dimensionality. 

A"Couette flow" approximation can be used to analytically predict the behavior 

of the shear stresses near the wall in a nearly equilibrium flow. Estimating that U 

and W are functions of y only leads to the conclusion that 

——       du       dp ,„ ,. 
- pu'v'+ fi—= y— + T0X. (5.1) 

We compared our data to the above equation and found that there was poor agree- 

ment. This lack of agreement is probably due to the rapidly changing pressure gra- 

dients. 

The spanwise — v'w' shear stress is represented in figures 5.13 and 5.14.   For a 

two-dimensional boundary layer, v'w' is zero; we see increasing —v'w' with increasing 

three-dimensionality. The peak =$£■ is about 0.5, near y+ = 10 to 20, which is almost 

as large as — u'v' at that point. 

Perhaps the most striking feature of these figures is that the crosswire fails to 

capture the major part of the v'w' stress.   We must be very careful not to draw 

too-broad conclusions from studies which barely capture the behavior of v'w'. 
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We include the crosswire data normalized by "outer" parameters in figures 5.15 

and 5.16. These figures include u'w' data from the crosswire. Near the wall u'w1 is 

positive, but u'w' is negative for most of the boundary layer. \u'w'\ is generally larger 

than \v'w'\, as is commonly found in other three-dimensional turbulent boundary layer 

experiments. We see that u'w' increases as the flow becomes more three-dimensional, 

with a maximum value of approximately 0.035% of Uref
2, or about 50% of the local 

u'v'. 

The LDA data as presented are slightly contaminated by u'w'. The contamination 

of ü^ and ü/2 js negligible (0.3% of u'w') and the contamination of vn is zero. However, 

the shear stresses need further discussion. The error in u'v' and v'w' is equal to 

0.123ü7tö7. For two-dimensional boundary layers u'w' is identically zero, so initally 

the effect of vJw1 on ÜV is negligible. For three-dimensional turbulent boundary 

layers, this error is small above y+ = 50, with errors in u'v' averaging 3%. Near the 

wall in a strongly turned boundary layer, u'w' can become as large as u'v', so u'v' 

and i/ä/ could be underreported by as much as 12% of vJv'. Effects of u'w' on the 

LDA data are discussed in detail in Appendix B. 

5.4   Angles of stress and strain 

An isotropic eddy viscosity formulation is only valid if the shear stress angle 7T is 

identical to the mean strain angle, 7a. 

7T   =   tan-1 (-tÄüV-üv); (5.2) 

s tan- m IBU\ _ (5.3) ldU\ 
-"■ taM Kw/ny 

These angles, along with the mean flow angle 7, are indicated in figures 5.17 through 

5.23. We have calculated 7S by differentiating the data, using a parabolic fit to the 

unevenly spaced data to estimate the first derivatives. 

# _ (Vi-i ~ y,)2(/.+i ~ /«) ~ (Vi+i ~ Vififi-i ~ /») /54x 
dy{y=yi)    (yi-i - yi)2(yi+i - yi) - (yi+i - yi)2(yi-i - ViY 

For very closely spaced data with some uncertainty, the first derivative becomes very 

jagged, so when differentiating the hotwire data we chose to replace j/,+i by y,+2, 
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Vi-i by 2/,_2, fi+i by /j+2, and /,_i by /,_2 in the above equation, in order to obtain 

smooth, yet accurate derivatives. The 7T data also tend to be noisy, because of the 

noise in v'w1. 

Agreement between the flow angle 7 and the gradient angle fg is not expected. 

However, if the flow is collateral at the wall, as conjectured in Chapter 4, there 

would be some agreement in the viscous sublayer. To see this, suppose U = C\y and 

W — c2y: Then 7 = 7a = tan-1(^). The angle data uphold this idea of collateral 

flow at the wall, showing close agreement at all stations around y+ = 8. Below y+ = 8 

scatter prevents us from making further conclusions. 

Throughout most of the boundary layer, the angles of stress and strain do not 

agree with each other. Based on the results of other experiments, we expect this 

misalignment. Most of the experiments which we discussed in Chapter 1 demonstrated 

that the shear stress vector lagged the mean strain vector. Our data demonstrate the 

same lag through most of the boundary layer, especially in the outer part. Station 

FF shows that (7,. — 7) is less than (7,, — 7) by as much as 25 degrees. However, close 

to the wall the angles nearly coincide, and the difference between 7T and 7a below 

y+ = 10 seems to become negligible, although noise at very low y hides the pattern. 

5.5   Structural parameters 

Townsend's structure parameter ax is shown in figures 5.24 and 5.25. Considerable 

attention has been paid to a\ in previous studies. It can be thought of as the "effi- 

ciency" of the turbulence in generating shear stress. As discussed in Chapter 1, the 

value of ax is generally accepted to be around 0.15 for two-dimensional boundary lay- 

ers, even in the presence of moderate pressure gradient, but many three-dimensional 

turbulent boundary layer studies have found a\ to drop below that value. The cross- 

wire data show the behavior of <Zi in the outer part of the boundary layer. Near 

y+ = 1000, ai is at its highest, ranging between 0.12 and 0.14. Profile G has the 

lowest values of a\. Surprisingly, the data on the z = —3.5 line show less spread than 

the data on the z = 0 line. The LDA data are noisier but also indicate suppressed 

values of ai. Looking back at figure 5.11 it appears that reduced values of shear stress 
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axe the cause for the suppression of a\. Flack and Johnston observed that for their 

30 degree bend flow, ax took on a consistent profile from the wall to about y+ = 50, 

then fell to values around 0.11. We do not observe this near-wall agreement. This 

may be due to our experiment's higher Reynolds number and stronger curvature. 

We observed divergent behavior of the shear stresses as low as y+ = 10, while their 

shear stresses behaved similarly up to y+ = 50. The experimental uncertainty in the 

measurement of a,\ is quite high, so it is difficult to draw broader conclusions. 

In section §5.3 we discussed the influence of u'w' on the reported values of the 

Reynolds stresses. The aggregate effect on the turbulent kinetic energy is zero, but the 

shear stress magnitude is altered by approximately 12% of u'w'. This causes the LDA 

data to underestimate ai when u'w' is strongly negative, specifically toward the outer 

edge of the LDA data for cases of strong three-dimensionality, and to overestimate ax 

in the near-wall region. 

The ratio of the normal stresses in the plane of the wall to the wall-normal normal 

stress, u'2-fe"'2 is displayed in figures 5.26 and 5.27. A value of 2 is consistent with 

equipartition of turbulent kinetic energy between un, v12, and w'2, which we expect 

the data to approach in the freestream. The wall forces v'2 to approach zero faster 

than u/2 and v/2, so we expect to see the value of ul2£?'2 to be higher in the boundary 

layer. This turbulence parameter grows considerably less steep as the flow develops. 

Eddy viscosity formulations are commonly used to relate the shear stress in a 

boundary layer to the mean velocity gradient. The misalignment of the shear stress 

and the strain rate vectors shown above indicates that a scalar eddy viscosity is not 

appropriate in three-dimensional turbulent boundary layers. The eddy viscosity ratio 

Ne is used as a measure of the anisotropy of the turbulence. Usually, Ne is defined 

as the ratio of the spanwise eddy viscosity to the streamwise eddy viscosity in a 

coordinate system aligned with the local mean flow. Relating Ne to the quantities we 

have already defined, it can be represented as 

N. * pktZll (5.5) 
tan(7fl-7) 

There are serious flaws with the concept: first, that two misaligned vector quanti- 

ties should be related by a simple scalar proportion, and second, that the coordinate 
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system could everywhere have a different orientation throughout the flowfield. Nev- 

ertheless, the eddy viscosity ratio holds some meaning in that it represents in a single 

parameter the extent of misalignment of the stress and strain vectors. 

We plot Ne for the LDA data in figures 5.28 and 5.29. The values of Ne are 

determined from the angle data presented in figures 5.17 through 5.23, and necessarily 

have high uncertainties. The measured Ne is always less than 0.8, and a large fraction 

of the values are between 0.2 and 0.4. 

Flack and Johnston measured as close to the wall as the present experiment and 

found that they had to disregard all values of iVe below y+ = 20 due to high uncer- 

tainties. They found about as much scatter in the values of Ne as are seen in the 

present study. They concluded that an isotropic eddy viscosity could model their flow 

from the wall through the inner buffer region (i.e. for y+ < 50). Such a model is 

not supported by the present data. Other earlier experiments have shown the eddy 

viscosity ratio ranging between 0.1 and 1.2. Anderson and Eaton (1989) postulated 

that the level of suppression of Ne below unity is somehow a function of the turning 

rate, defined by the boundary layer thickness divided by the radius of curvature. As 

seen in figure 4.4 this nondimensional turning rate, which is approximately equal to 

099-gj^ is between 0.02 and 0.04 for most of the stations studied. A comparison of 

5.28 to 5.29 does indicate that the more strongly turned stations — those along the 

z = —3.5 line — have lower values of Ne- 
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Figure 5.14. —v'w' shear stress, z = —3.5. 
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Figure 5.20. Flow angles, station G 
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Chapter 6 

Reynolds Stress Transport 

6.1   Overview 

In this chapter we discuss the Reynolds stress transport equations and examine 

each term, evaluating it either directly from the data or indirectly, from equation 

balances. We also derive a transport equation for a\ and evaluate its terms. Plots of 

the transport equation terms are presented at two stations in the three-dimensional 

boundary layer; one at the inception of three-dimensionality (station "D") and one 

where the flow is highly skewed (station "G"). We also present the vertical transport 

velocities for all stations where LDA data were acquired. 

The transport equations for the Reynolds stresses are developed from the Navier- 

Stokes equations, by adding tt; times the Uj equation to Uj times the u, equation: 

DluiUi)        DUJ        Du{ 

Dt Dt       3 Dt 
Upon Reynolds averaging, we find for a steady flow: 

(6.1) 

Uk dxk 

Vi 

1 

p 

'du'j     du'A 

Kdxj     dxij 

—dUj—dUi 
- 2v 

du'j du'j 

dxk dxk 

+ (6.2) 

'«* 

The first term represents the generation or "production" of uju'-: 

(6.3) 

The generation term represents the effects of the mean velocity gradients on the 

Reynolds stresses. It is also known as the Reynolds stress production. It is possible 

to directly measure the Vij terms. 
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The second term is known as the pressure-strain redistribution term: 

1 
*« = ~ P' \dxj     dxij 

(6.4) 

It represents a tendency for the Reynolds stresses to become isotropic. We cannot 

measure the pressure fluctuations locally, nor can we measure their correlations with 

velocity gradients. 

Next is the viscous destruction term 

_       .  du': du'j .    . 
Vij^2udTkdfk 

(6-5) 

This is sometimes referred to as the dissipation rate. 

The third-order diffusion term, representing the turbulent transport of the Reyn- 

olds stresses, is 

1 //?/?/ 

jijk = -(Wi^+WAk)+<^k + ^-ö^ (6-6) 

Again, we cannot measure the terms containing p'. We also do not have the capability 

to measure the second derivatives of the Reynolds stresses with respect to x and z. 

We do measure most of the triple products, and can calculate their derivatives. 

6.2   Methods of determining derivatives 

In addition to the seven primary LDA profiles which we have been presenting, 

we acquired profiles at six secondary locations. The (x, z) coordinates of the profile 

locations used to calculate streamwise and spanwise derivatives are presented in table 

6.1. To calibrate the LDA in places away from our pressure profiles, we interpolated 

the pressure field at the calibration height. 

We use a central difference formula with secondary profiles 2 and 4 to calculate 

^ derivatives, and with secondary profile 3 and the primary profile to calculate ^ 

derivatives. To calculate wall-normal derivatives, we use the parabolic derivative 

formula cited in the previous chapter. Second derivatives were calculated using the 
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related formula: 

d2f 
dy 

= 2 (y»+i ~ »Olft-i ~ ft) ~ (y»-i ~ yj)(fi+i - ft) ,6 7) 

(yi-i - j/,)2(y,+i - yi) - (yi+i - yiYivi-i - yi) V=Vi 

6.2.1   Error estimates in derivatives 

We estimate the error intrinsic to the central difference formula, 

df   _/m-/i- 
dx 

(6.8) 
2h 

where h is the distance between data points: 

h = xi+i - Xi = Xi - x,_j (6.9) 

The error in this method is equal to \h2f'"(x). To quantify the error, we use another 

method to calculate the third derivative with respect to x. Using the data at stations 

D, E, F, and G, we apply the formula below, for the third derivative for evenly spaced 

data points. 

f'"(x) = /l"3/2^3/3"/4 (6.10) 

Upon calculating /'", we find that the error in ^ from using equation 6.8 is on average 

2.0% and never greater than 5%. Another issue in error is the small y offset of the 

various profiles. Near the wall, where the derivatives in y axe large, we expect to see 

some error due to data acquired at very slightly different heights. We may be forced 

to ignore some of the points that are closest to the wall. We expect that the error |jj 

should be comparable to the error in |j, and that the errors in W and the Reynolds 

stresses will likewise be similar. Strictly, the central difference formulas apply to the 

center location between the four profile locations. Since the second derivatives are 

small, as evidenced by the slowly changing data presented in the previous chapters, 

we consider the calculated derivatives to be also valid at the primary profile locations. 

When differentiating with respect to y there is potential for scatter in the data 

causing unreliable derivatives. The largest potential error in the Reynolds stress 

transport terms is due to inaccuracies in f^ near the wall where the production 

terms are at their largest. We performed error analysis on |r based on the scatter we 
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predicted in Chapter 3. At y+ = 10 the potential error in fj is 3% of the calculated 

^-   At u+ = 100 the absolute error is one fifth the size of the error at y+ = 10, but 
ay " 

represents a 10% error in the measured §^. We are confident that the derivatives 

with respect to y are not overly contaminated by scatter, since the mean velocity 

gradient angle 7fl from LDA data in chapter 5 was observed to be quite smooth. 

6.3   Turbulent kinetic energy transport 

To derive the transport equation for turbulent kinetic energy, we take the trace 

of equation 6.2. Note that we use q2 in place of k, so we are actually referring to 

the transport of twice the turbulent kinetic energy. By continuity, $,, is zero in a 

constant-density, steady flow. Equation 6.2 therefore reduces to: 

advection production dissipation 
s~ 

dxk oxk dxkdxk 
turbulent transport 

d_ 
dxi 

-rfu'iSik + uMu^ + V 
du'iu'i 

(6.11) 
p- dxk 

It is possible to measure most of the terms in equation 6.11, with the exception of 

the turbulent pressure fluctuation term and the Vu term. We can indirectly determine 

the sum of the dissipation and pressure fluctuation terms by measuring the other 

terms in equation 6.11. When the pressure fluctuation is negligible, this provides an 

estimate of the dissipation. 

To further simplify the turbulent transport term, we apply the thin shear layer 

assumptions. Thus, we assume that for the normal stresses, the second derivatives 

with respect to y are much larger than the second derivatives with respect to x and 

z. Further, we can confirm with our experimental data relations 6.12 through 6.15 

below. 

4-^   <   Pu1^' (6.12) 
ox oy 
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—^V2 < _^3 (6 13) 

^^ < — ^ (6.15) 

—A? < —Ä? (6.16) 

/) Ft 
0-W2 < _^p2 (617) 

We cannot directly check relations 6.16 and 6.17 but they are probably valid in any 

attached boundary layer. With these assumptions we can eliminate all but three 

terms of the turbulent transport. 

Next we simplify the production term, following Pierce and Ezekewe (1976), who 

measured the stress gradients in a three-dimensional turbulent boundary layer and 

found that the role of u'w' in the production terms was significantly smaller than the 

role of u'v' and v'w'. Our data show that the two terms üv|p and v'w'^ dominate 

the turbulent kinetic energy production. 

With all the above simplifications, equation 6.11 is reduced to: 

advection production 
- dissipation 

triple product transport        viscous transport 

-j^ö/V + ^-f^) -v(^\       (6.18) 

We have measured all of the terms in equation 6.18 with the exception of T>u, 

which we can infer from the balance of the remainder of the terms. Figures 6.1 

and 6.3 show the transport terms for q2 at stations D and G, plotted in "inner" 

coordinates. Since these quantities are usually seen in outer coordinates, we include 

figures 6.2 and 6.4, normalized on £99 and uT. In these latter figures, we expand the 

vertical scale to examine the terms' behavior in the outer part of the boundary layer. 

The most striking feature of the turbulent kinetic energy transport terms is that the 

near-wall region dominates the figures. 
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The production term, measured directly, dominates the TKE transport. It is 

always larger than the advection and turbulent transport terms. The production is 

highest near the wall, which is expected since the velocity gradients and the shear 

stresses are both high near the wall. We should expect the production to drop to zero 

at the wall as the shear stresses drop to zero. This is evident at station G but not 

at station D, most likely due to noise near the wall. One indicator of the steepness 

of the drop-off is the ratio of production at y+ = 10 to the production at y+ = 100. 

For station D, this is approximately 20, and for station G, approximately 30. Station 

G exhibits higher production than station D at y+ = 10 and lower production than 

station D at y+ = 100. The direct numerical simulation of Moin et al. (1990) also 

found suppression of turbulent kinetic energy production. They found that with 

increasing spanwise pressure gradient imposed on a channel flow, the production of 

turbulent kinetic energy was suppressed significantly in the region 10 < y+ < 40. 

The advection and turbulent transport terms are generally much smaller than the 

production and dissipation terms. These two smaller terms reach small (negative) 

peaks below y+ = 20, with the advection reaching a peak closer to the wall than the 

turbulent transport. Spalart's (1988) two-dimensional boundary layer computation 

showed that advection should be negligible near the wall, while the turbulent trans- 

port reaches a negative peak around y+ = 10. Around y/699 = 0.04 (y+ — 50) the 

turbulent transport at station D is markedly higher than at station G. The advection 

seems to diminish in the near-wall region and grow in the outer region as the flow 

develops. Growth in the advection term with increasing three-dimensionality was also 

seen by Schwarz and Bradshaw (1992). 

The dissipation rate is inferred by the balance of the other terms, and since the 

turbulent transport and advection terms are small, T>a essentially balances the pro- 

duction. This is especially true for station D above y/899 = 0.15, as seen in figure 

6.2.1 When the dissipation is equal to the production , the turbulence is said to be in 

"local equilibrium." Station G does not exhibit local equilibrium to the extent that 

station D does, primarly due to the increased advection.   Bradshaw and Pontikos 

1The outermost point in figure 6.2 has been left off the plot, because of one anomalous wn 

measurement. 
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(1985) showed that though the the empirical relation 

performs well in predicting the dissipation rate of turbulent kinetic energy for two- 

dimensional boundary layers, it underpredicts the dissipation rate for three-dimensional 

boundary layers. Littell and Eaton (1991) and Schwarz and Bradshaw (1992) also 

found that the above relation grossly underpredicts the dissipation rate in the region 

below y/SoQ « 0.4 . We add this relation to our data (doubling e because we plot the 

transport of q2) in figures 6.2 and 6.4. The relation underpredicts the dissipation at 

both stations. Near the wall we expect that there is some error in the dissipation due 

to the pressure-strain term being non-negligible. Spalart's two-dimensional bound- 

ary layer simulation showed a small peak — smaller than the peak in the turbulent 

transport — in the pressure-strain term around y+ — 3. 

In order to complete the individual normal stress transport equations, it is nec- 

essary to know the partition of the dissipation term. For large y+, it is a reasonable 

approximation to assume equipartition, but near the wall that assumption breaks 

down. Thus, it appears that we have little prospect of learning about near-wall be- 

havior of the transport of the individual normal stresses. 

6.4   Shear stress transport 

6.4.1   — u'v' transport 

To evaluate the terms of the shear stress transport equations, we begin by return- 

ing to equation 6.2, setting i = 1 and j = 2. 
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advection 

{ui+viy+
wiy-^= 

production 
-*■ 

^    öx dy 
pressure—strain 

u'w1—) y + [ U'ü 

' Q <} Q  , 

dissipation 

u 

du'dv'    du'dtf    du' dv' 

dx dx     dy dy     dz dz 
(6.20) 

turbu/ent transport 

+ 1 fdjfu'     dp'v'\ 
p \ dy        dx J 

dunv'     du'v12     du 
dx dy dz 

Wu7       (d2       d2       d2\-ri 

dz- + U[dx-2 + dy-' + d?)UV. 

Here we neglect the dissipation term entirely and use the balance of equation 6.20 to 

determine the pressure-strain term. As with the turbulent kinetic energy transport 

equation, we also neglect the pressure correlations in the turbulent transport terms. 

This implies that the term determined by the equation balance represents the sum of 

the pressure-strain term and the pressure transport term. Again using the thin shear 

layer assumptions, we can eliminate several other terms in equation 6.20, reducing it 

to: 

advection production triple transport      vise, transport 

(u-i- + V^- + W-f](-u'v')=  v'^  +$12 + 
\   dx        dy dz) ay 

du'v 

dy 

n 
+   v- 

d2u'v' 
(6.21) 

Figures 6.5 and 6.6 represent the transport terms for —u'v' at station D; figures 

6.7 and 6.8 show the transport terms for -ÜV at station G. Littell and Eaton (1991) 

observed that the production of —u'v' was concentrated nearer the wall for their disk 

boundary layer than for two-dimensional boundary layers. We do not observe this 

effect. In the near-wall region we observe a decrease in the production of —u'v' from 

station D to station G. The level of -ÜV production at station D is similar to that 

of Spalart (1988), which showed a peak value of 0.11 around y+ = 15. Advection is 
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strongly enhanced at station G (see figure 6.8), so we infer that the pressure-strain 

term is reduced. 

6.4.2   — v'w' transport 

Making similar approximations in the — v'w' equation yields: 

advection production triple transport      vise, transport 
_^— 

(    Q d d\            —dW dv'2w' d2v'w' 

K + VTy+ wi) ("*w) - " V +4*+  ST   + ""V"   (6-22) 

All the terms in equation 6.22 are zero for a two-dimensional boundary layer, and 

we should expect to see them growing as three-dimensionality increases. Figures 6.9 

through 6.12 show the —v'w' transport equation terms. At station D, where the 

three-dimensionality has acted upon the near-wall turbulence only, we note that all 

the terms are essentially zero above y/699 = 0.08.  Station G exhibits transport of 

—v'w' throughout the measured region. The production term is positive from the 

wall to the y location of peak W and negative outboard of that point, where W is 

decreasing with y (see figure 6.12). The sign change does not show up in figure 6.11 

becuase the negative is small compared to the positive peak. Figure 6.12 illustrates 

this change in sign of the production term. 

6.5   a\ transport 

It is possible to combine the above transport equations to obtain a transport 

equation for the turbulence structure parameter a\. Looking at the terms of this new 

transport equation may give us insight into the behavior of aj. Recall that aa = -z/q2- 

Taking the material derivative of ax, 

■%) = D(^)-^(J)-^ (6-23) 

where 

- = (u'v'2 + v'w'2)1/2 (6.24) 
P 
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Differentiating equation 6.24 and substituting into equation 6.23, we have 

£>(Gl) = _L (-WD{-M) - Vw'Di-v'w')) - -^D(q2) (6.25) 

We expand the a\ transport equation below, by substituting equations 6.18, 6.21 and 

6.22 into equation 6.25. 

production 

f   (T\      — ,\   1   / dU     dW\    u'v' v'w' 

triple product transport 
-*■ 

z z f d\            v     u'v'du'v'2     v'w'dvnw' 

q4       q4 \dy) q2z
P  

dv      izP   °v p 
viscous transport 

7 fd2q2\       u'v'd2u'v'       v'w'd2v'w' ,. ... 

*'^\s?r"wsF~'^.~s?-   (6-26) 

In practice we evaluate the terms of equation 6.26 from the terms already plotted in 

figures 6.1 through 6.12. The figures show that the production decreases dramatically 

from station D to station G in the region below y+ = 30. The reduced production 

may help to explain why we see the reduction of ax with three-dimensionality (as seen 

in Chapter 5). Station G exhibits strong advection in the outer data points, which 

arises from the strong u'v' advection at that station. 

6.6   Vertical transport velocities 

We also present the vertical transport velocities. These generally represent the 

ability of the turbulence to transport the Reynolds stresses in the +y direction. They 

are defined as follows: 
u'2v' + v13 + v'w'2 

u^ + v^ + w12 

u-v -t- v-1 vw- ,    7, 
Vq2 =    — , — , — (6.27) 

u'v12 

Vuv EE = (6.28) 
u'v' 
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u'2u>' 
Vvw = ==- (6.29) 

v'w' 

We scale the vertical transport velocities on uT and present them in figures 6.17 

through 6.22. 

The vertical transport velocities plotted are negative very near the wall, and cross 

zero around y+ = 10 to 20. This is in agreement with the near-wall behavior of two- 

dimensional boundary layers, as discussed by Bradshaw and Pontikos (1985). The 

triple products transport the shear stresses and turbulent kinetic energy away from 

regions of highest production centered around y+ = 10. The direction of transport is 

toward the wall below y+ = 10 and away from the wall above y+ = 10. 

The Vq2 profiles collapse very well in inner coordinates up to nearly j/+ = 100. 

All the profiles have a peak near y+ = 25. Above y+ = 100 there seems to be mild 

reduction in Vqz with increasing three-dimensionality. 

The vertical transport of u'v' reaches a local maximum near y+ = 25, then de- 

creases through y+ = 200. As the three-dimensionality develops, Vuv is suppressed in 

this region. Station FF exhibits the greatest suppression of Vuv, with the u'v12 triple 

product actually becoming positive. The vertical transport of v'w' is in general larger 

than Vuv, and is presented on an expanded scale. This trend was also observed by 

Flack and Johnston (1993). The Vvw curves are similar in shape to those of Vuv, and 

the further downstream stations also seem to have suppressed values of Vvw. Above 

y+ = 200, the vertical transport velocities of the shear stresses exhibit considerable 

scatter, as the triple products and the shear stresses both approach zero. 
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x' z 

D 10.5 0 
D_2 11.0 -.5 
D_3 11.5 0 
D_4 11.0 +.5 
G 21.0 0 
G_2 21.5 -.5 
G-3 22.0 0 
G_4 21.5 +.5 

Table 6.1. Secondary profile locations (dimensions in inches). 



Chapter 6. Reynolds Stress Transport 149 

1.0 

*e   0.5 h 
3 

r   o 

*   -0.5 

-1.0 

T—i i iii mi 1—i  i i i mi 1—i i i i in 

j I   I i i v\ I 

advection 
production 

tu rb. transport j 
vise, transport   ; 

—dissipation 
11 HI _J i i I    I   I I Ml 

10 102 

y+ 

10* 

Figure 6.1. Terms of Re-stress transport equation for q2, inner scaling. Station D. 
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Figure 6.2. Terms of Re-stress transport equation for q2, outer scaling. Dashed curve 
indicates two-dimensional dissipation rate correlation. Station D. 
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Figure 6.6. Terms of Re-stress transport equation for u'v', outer scaling. Station D. 
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Figure 6.8. Terms of Re-stress transport equation for u'v', outer scaling. Station G. 
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Figure 6.10. Terms of Re-stress transport equation for v'w', outer scaling. Station D. 
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Figure 6.12. Terms of Re-stress transport equation for v'w', outer scaling. Station G. 
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Figure 6.14. Terms of aj transport equation, outer scaling. Station D. 
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Figure 6.16. Terms of ai transport equation, outer scaling. Station G. 
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Figure 6.17. Vertical transport velocity for q2. 2 = 0. 
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Chapter 7 

Conclusions and Recommendations 

7.1   Overview 

We have measured the velocity field in a pressure-driven, three-dimensional bound- 

ary layer, at momentum thickness Reynolds numbers between 4000 and 5000. The 

flow was achieved by placing a 30 degree wedge in a straight duct in a wind tunnel. 

The boundary layer is dominated by a spanwise pressure gradient which produces 

up to 22 degrees of skewing across the layer. The furthest downstream measurement 

locations also experience a fairly strong favorable streamwise pressure gradient. A 

three-hole pressure probe was used to measure the mean flow, and the near-wall laser 

Doppler anemometer was used to fully investigate the near-wall flow. Crosswire data 

overlapped the LDA data to provide information about Reynolds stress behavior in 

the outer part of the boundary layer and to provide comparison to the LDA data. 

The development of the near-wall LDA was a significant portion of this work. 

The LDA proved to provide accurate measurements of the mean flow and Reynolds 

stresses well below y+ = 10. Special challenges arise due to a small measuring vol- 

ume. Specifically, the fringe spacing varies along the measuring volume, necessitating 

calibration of the LDA for each run. 

The near-wall data include mean velocity measurements, Reynolds stresses, and 

triple products, at seven primary profile locations and at six secondary profile loca- 

tions. The secondary profile locations were used in the calculation of Reynolds stress 

transport equation terms. 
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7.2   Mean flow 

The 30° wedge creates the pressure gradient to turn the flow, and the fairing on the 

top of the test section reduces the streamwise acceleration. The static pressure sur- 

vey shows that the boundary layer grows under strong, increasing spanwise pressure 

gradient and relatively mild streamwise pressure gradient. The maximum spanwise 
C   dcp = 0.044. pressure gradient, normalized by the boundary layer thickness, is 

Fitting Q/QT to the two-dimensional logarithmic law of the wall indicates fair 

agreement but not complete collapse. The downstream profiles tend to fall below 

the upstream curves in this normalization. This is primarily due to the effect of 

streamwise pressure gradient. Skin friction coefficients calculated from the fit to the 

law of the wall agree well with a correlation for two-dimensional boundary layers, at 

early stations. Later stations with strong streamwise pressure gradient show higher 

levels of skin friction. 

The near-wall hodograph plots suggest that the flow may be collateral at the wall. 

That is, near the wall the spanwise velocity appears to be simply a scalar product 

of the streamwise velocity. The outer mean flow components exhibit more curvature 

than predicted by the inviscid Squire-Winter-Hawthorne theory. 

7.3   Reynolds stresses and related quantities 

The Reynolds normal stress profiles change slowly from the upstream two-dimensional 

boundary layer behavior. The u'2 profile shows a peak at approximately y+ = 10, and 

drops off rapidly at the edge of the boundary layer. The more strongly 3D stations 

demonstrate suppressed levels of un throughout the range 10 < y+ < 200. The vn 

profiles are shaped like two-dimensional profiles of v'2, changing very little as the flow 

develops. All of the profiles collapse very well in wall coordinates. The w'2 profiles 

change the most dramatically. Initially the profiles are typical of a two-dimensional 

boundary layer, with levels of w'2 intermediate between v'2 and u'2. However, as 

three-dimensionality becomes strong the w'2 profile grows a peak near y+ = 10. The 
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increase in w'2 nearly makes up for the decrease in u12 so the turbulent kinetic en- 

ergy is only mildly suppressed in the near-wall region. Toward the outer edge of the 

boundary layer, q2 grows as the Reynolds number increases. 

The shear stresses are strongly affected by three-dimensionality. The streamwise 

shear stress —u'v' begins much like a two-dimensional boundary layer. With increas- 

ing three-dimensionality, it displays a marked decrease, by as much as 30%. The 

spanwise shear stress, which is zero in a two-dimensional boundary layer, grows to 

peak values as high as 0.65 u2. Both components of the shear stress vector show col- 

lapse very near the wall (y+ < 10) in inner coordinates, but they diverge above that 

region. The structural parameter a\ is suppressed throughout most of the boundary 

layer, since the magnitude of the shear stress decreases more than does the magnitude 

of the turbulent kinetic energy. The u'w' stress was measured with the crosswire but 

not with the LDA. As is consistent with flow turned in this direction, u'w' is positive 

between the wall and y+ « 100 and negative outboard of that. 

The structural parameter (u12 + w'2)/v'2, also invariant to coordinate rotation 

about the y axis, decreases from the wall outward to the edge of the boundary 

layer, as the turbulence approaches isotropy. Through the development of the three- 

dimensionality this quantity is reduced. 

The angles of stress and strain are misaligned throughout most of the boundary 

layer, as should be expected based on the results of previous studies. In general the 

shear stress angle 7T lags the mean strain angle *yg. This misalignment guarantees 

that an isotropic eddy viscosity model would perform poorly on this flow. Further, 

the quantity Ne varies throughout the flowfield, demonstrating that it would also be 

difficult to apply an anisotropic eddy viscosity model successfully. Near the wall, 

there is an exception. Around y+ — 10 the angles 7T, 75, and 7 nearly coincide. This 

further supports the concept that the flow is collateral at the wall. 

7.4   Reynolds stress transport 

Terms of the Reynolds stress transport equations are presented for two stations 

in the flow.   The production of TKE appears to be reduced in the region y+ > 
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20 by three-dimensionality, with greater reduction at greater distances from the 

wall. Turbulent transport (triple-product transport) seems to be reduced by three- 

dimensionality. Advection is increased in the outer part of the boundary layer, as 

found by other experimenters. An empirical dissipation relation that works well for 

two-dimensional boundary layers underestimates the dissipation rate of turbulent ki- 

netic energy. 

We observe a decrease in the production of — uV with three-dimensionality. AH 

terms of the transport equation for —v'w' increase in magnitude with three-dimensionality. 

A transport equation for a\ has been derived. Its terms demonstrate a dramatic 

decrease in the production of a\, consistent with the observed decrease in a\. 

The vertical transport velocities are also presented. The triple products trans- 

port the shear stresses and turbulent kinetic energy away from regions of highest 

production centered around y+ = 10. The transport of q2 is observed to be mildly 

suppressed above y+ = 100 with increasing three-dimensionality. The vertical trans- 

port velocities of — u'v' and — v'w' are affected more strongly by three-dimensionality, 

with suppression evident throughout the boundary layer. 

7.5   Recommendations 

This study has provided insights into the behavior of the Reynolds stresses near the 

wall in a fairly strongly turned three-dimensional turbulent boundary layer. There are 

very few extant data for comparison to this study. Flack and Johnston (1993) found 

fairly different results with a much lower Reynolds number boundary layer, especially 

with respect to the issue of collateral flow at the wall and near-wall collapse of a%. 

Experiments at yet higher Reynolds numbers will help the community to understand 

the "limiting" behavior (if any) of three-dimensionality. 

We generated a flow dominated by spanwise pressure gradient, but we were not 

able to completely uncouple the effects of spanwise and stream wise pressure gradient. 

Although we do not expect these effects to interact simply, we would like to see more 

studies with three-dimensionality in the absence of streamwise pressure gradient. 

The near-wall LDA generated high-quality data, but we believe that improvements 
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to the optical train could make data acquisition simpler and more reliable. One spe- 

cific recommendation is that the distance between the Bragg cell and the transmitting 

lens be kept constant, which would make fringe variation less of a difficulty. A second 

recommendation is to measure u and w together, to reduce the uncertainties in the 

flow angles. This may necessitate using five beams to form the measuring volume 

instead of the existing three beams. 
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Appendix A 

Crosswire Data Reduction 

A.l   Introduction 

The following discussion describes how the crosswire data were converted to ve- 

locities in the relevant coordinate systems. Assume we begin with the velocities from 

wire 1 and wire 2: Ux and U2, u[2 and u2
2, and u[u'2. From the probe calibration, we 

have the angles of the two wires, $1 and ^2. Note that $2 < 0. 

A.2   First coordinate transformation 

We first need to extract the velocities parallel and perpendicular to the probe 

stem, which we will call u* and w*. See figure A.l for the orientation of these velocity 

components. Simple trigonometry yields: 

ux   =   u* cos $x + w* sin $1 (A.l) 

u2   =   u* cos \&2 + w* sin $2 

Solving for u* and w* gives: 

u*   = Ul Sin ^2 ~U2 sin ^* fA2,| 
cos $! sin ^2 — cos *2 sin $1 

w*   = 
«2 COS $1 — U\ COS $2 

cos $1 sin #2 — cos \&2 sin ^i 

We use equations A.3 to produce the velocities and Reynolds stresses in the coor- 

dinates of the probe tip. For each of the four orientations of the probe, we generate 

U*, W*, T2, tö^and 77. 

U*   =   (Uisiny2-U2smyl)/D (A.3) 

W*   =   (U2 cos $! - Ux cos ty2)/D 
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u'*2   =   {u'l sin2 tf 2 + «1 sin2 *i - 2"iu2 sin #i sin #2)/# 
2 

2 

where 

u,'*2   =   (u'2 cos2 *2 + u'l cos2 #i - 2uiu'2 cos $! cos $2)/£ 

u'*w'*   =   (t?7^(cos Wi sin \JJ2 + sin $i cos \&2)— 

ü^sin $2 cos $2 - tt^sin $i cos Vi)/D2 

D = cos $i sin $2 - cos *2 sin *x (A.4) 

A.3   Combining the probe orientations 

The next step is to use the four probe orientations to put the velocities into one 

coordinate system aligned with the probe stem. Refer to figure A.2 for the probe 

orientations. For clarity in this figure, the circles indicate the "upstream" ends of 

the wires. As the figure indicates, we are rotating the probe tip and measuring u* 

and w*. In each orientation, u* is the velocity along the probe stem and w* is the 

velocity in the plane of the wires. Aligning the z axis parallel to the wall and the y 

axis normal to the wall, we have 

w* = wcos$ + üsin$ (A.5) 

In position 1, w* = w, and in position 3 w* = -v. Therefore, we can extract most of 

the velocity components from these two positions. Position 1 yields U, W, u'2, w'2 

and u'w'. Position 3 adds -V, u/2,and — u'v'. From positions 2 and 4 ( $ = -45° 

and $ = —135°) we have: 

w2  = w— - v— (A.6) 

w4  = -w-^~ - v— (A.7) 

Squaring and combining, we find 

7*2 7*2 

*p=* :"2 . (A.8) 
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A.4   Second coordinate transform 

The third step is to rotate the velocities and Reynolds stresses into the wind tunnel 

coordinate system. The probe is rotated at an angle 7 from the tunnel x-axis. To 

rotate into tunnel coordinates we use the angle 7, and to rotate into local freestream 

coordinates we substitute 7 — ß for the angle in the following equations. We denote 

the velocities in probe coordinates with the subscript 1 and the velocities in the new 

coordinates with subscript 2: 

Ui   —   f/iC0S7 — Wisin7 (A.9) 

W-i   —   U\ sin 7 + W\ cos 7 
,/2     _     „,>2„^ 2   ,   ,   „,,/2, u'2    =   u'x cos 7 + Wi sin 7 — 2u'1w[ sin 7 cos 7 

w'2    =   wi2sin27 4-iüi2cos27+ 2«'1tüisin7COS7 

1*2^2   =   ttjUi cos 7 — V1W1 sin 7 

V2Iü2   
=   uiuism f + v'1w'1 cos 7 

u2u>2   =   (ui2 — ^i2)sm 7 cos 7 + uiioi(cos2 7 — sin2 7) 

The final step is to do one further coordinate transform, for the grazing angle of 

the probe stem. 
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Figure A.2.   Crosswire positions.   1:   $ = 0°; 2:   $ = -45°; 3:   $ = -90°; 4: 
$ = -135°. 



Appendix B 

Small Angle Corrections for LDA Data 

B.l   Angular dependence of velocities 

The following discussion describes how to convert measured velocities from the 

LDA to relevant velocities through coordinate transformations. 041 represents the 

full crossing angle of the main beam with the 41 MHz beam, and 0:40 represents the 

full crossing angle of the main beam with the 40 MHz beam. The grazing angle of 

the main beam is represented by <f>. See figure 3.8 for the orientations of the beams. 

Let a = cos*f- ; b = sin*?■•, c = cos(<f> + ^f); d = sin(<j> + ^f), and mark the 

uncorrected quantities with tildes. The uv configuration gives 

ü   =   au + bw (B-l) 

v   =   cv — dw (B-2) 

and the vw configuration yields 

w   =   aw — bu (B>3) 

v2   =   cv — du (B-4) 

B.2   Mean velocities 

We solve the above equations for the mean quantities U, V, and W, disregarding 

the v>2 equation (B.4): 

•*-** (B.5) u = 
a2 + ft2 

w = aW + bU 
a2+ 62 

v = V + dW 

(B.6) 

(B.7) 
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B.3   Reynolds stresses 

From the above equations we also get 

u*2   =   a2w* + 2abüfw1 + b2w!2~ 

ü'v'   =   acu'v' — adu'w'+ bcv'w' — bdwn 

W2!   =   c2^ + d2üfi-2afvrw' 

W>   =   b2ü^-2abürw} + a2wi2 

v'w'   =   bdun — bcu'v' — adu'w' + acv'w' 

^22   =   c2t^ + d2ü^-2cdüfv' 

(B.8) 

(B.9) 

(B.10) 

(B.ll) 

(B.12) 

(B.13) 

We have for the Reynolds stresses six equations and six unknowns. However, we 

do not have a good way of measuring u'w' with this setup, so we expect the equations 

to be ill-conditioned if we try to solve for u'w'. For now, we neglect contributions 

from u'w', since we cannot measure it, and eliminate the extraV2 equation (B.13). 

(B.14) 

Ta2 0 0 0 b2 I ■ u'2 • ■ ü'2 ■ 

0 ac 0 be -bd u'v' ü'v' 

0 0 c2 -led d2 "pi AS Ö72! 

bd -be 0 ac 0 v'w' v'w' 

.b2 0 0 0 a2 . .w1*. .w7*. 

Now neglect all terms containing b2, d2, and bd, since they are very small: 

a' 

0 

0 

0 

LO 

0 

ac 

0 

-be 

0 

0 

0 

c2 

0 

0 

0 

be 

-led 

ac 

0 

o- ' u'2 ■ 

« 

- £j/2   ■ 

0 

0 

u'v' 

v~^ 

ü'v' 

0 

a2. 

v'w' 

.vS2. 

v'w' 

. wn . 

(B.15) 

We now solve for the actual Reynolds stresses: 

Ü72   =   ^u* 
a1 

tu'2   =   —-w'2 

(B.16) 

(B.17) 
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,,    \ 

(B.18) 

(B.19) 

(B.20) 

B.4   Triple products 

We perform the same type of analysis for the triple products. The equations below 

are derived from equations B.l through B.4. 

u'v'    =    —r- 
c\a 

(aü'v' - bv'w') 

v'w'   =   —r-r—Trriav'w' + bü'v') 
c{a2 + b2) 

,,/2    _ 
9/7 

V         ~        2 [v *' (a* + vyavw ' buv)\ 

üß 

= 

a* u'3 + Sa2b u,2w' + 3 a b2 u'w12 + 63 w'3 (B.21) 

ünv' a2 c u^v' — a2 d ul2w' + 2abc u'v'w' 

-2abdu'w'2 + b2cv'w12 - b2dtu'3 (B.22) 

ü'v12 a c2 u'v12 — 2a cd u'v'w' + b c2 v'2w' 

+a d2 u'w12 -2b cd v'w12 + b d2 w13 (B.23) 

v'\ cöv13 -Sc'dv^w' + Zcd2 v'w12 - d° w'3 (B.24) 

v'2w' -bdiu'3 + 2bcdul2v'-b c2 u'v'2 

+a <P u'2w' — 2a cd u'v'w' + a c2 v'2w' (B.25) 

v'w'2 -b2 d u'3 + b2c u'2v' + 2abd u'2w' 

—2 abc u'v'w' — a2 d u'w'2 + a2 c v'w12 (B.26) 

w'3 -ba u'3 + 3 a b2 u'2w' -3a2b u'w'2 + a3 w'3 (B.27) 

v'\ -d* u13 + 3 c d2 u'V -3c2d u'v'2 + c* v13 (B.28) 

As with the Reynolds stresses, we neglect contributions from all terms including 

both w and u. Also, the u/32 equation (B.28) is redundant. Again, we take out the 
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small terms — those that contain b2, d2, or bd, and the equations reduce to: 

0 

0 

0 

0 

0 

0 

0 

a2c 

0 

0 

0 

0 

0 

0 

0 

ac2 

0 

0 

0 

0 

0 

0 

c3 

0 

0 

0 

0 

6c2 

-Zc2d 

0 

0 

0 

0 

0 

0 

0 

a2c 

-6c2    0      ac2 

Solve for the triple products: 

~ä   =   — Tfi 

0 

0 

0 

0 

a3 

0 

0 

"   U*   ' 

« 

"   Ü'3   " 

u^v' ü^v' 

u'v12 u'v'2 

v*x 

v^w' 

v'w12 "I ~/Q V w 

v^w' 

w*   = u 

u'2v' 

u'v12 

a2c 
ü'2v' 

;(aü'v'2 — bv'2w') 

,/3 

(a2 + b2)c2 

v'w'2 

v^w' 

—v'w'2 

a2c 
1 

w'3   = 

(a2 + b2)c 

-rti>" 

■(ai;/2iü' + ftü'tS'2) 

(B.29) 

(B.30) 

(B.31) 

(B.32) 

(B.33) 

(B.34) 

(B.35) 

(B.36) 

B.5   Effect of unknown u'w', u'2w'^ u'w'2, u'v'w' 

The simplest solution to the problem of unknown u — w correlations is to ignore 

contributions from them. We demonstrate below that this introduces small systematic 

errors. We tabulate the errors introduced by products of u and w on the Reynolds 

stresses and on the triple products, in table B.l for <f> = 6° and 040 = 0:41 = 2°. 

We see that the normal stresses u'2 and wn each have a contribution of 0.035u'u>' (of 

opposite sign). Since v'2 is not affected by u'w', the turbulent kinetic energy is not 

affected by u'w'. The shear stresses will both be off by the amount — 0.123«'«;'. 
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Figure B.l illustrates the error in the shear stresses. At a profile location where 

u'w' is relatively large, we show u'v' and v'w', measured by the crosswire. These 

"actual" curves are the Reynolds shear stresses, which are not contaminated by u'w'. 

We also plot u'v' — 0.12Zu'w' and v'w' — 0.123u'w', calculated from the crosswire data. 

These "simulated" curves represent the data the LDA should generate. Toward the 

outer edge of the boundary layer where u'w' is negative, we see that the magnitude 

of the shear stress will be slightly underreported by the LDA. In the inner part of the 

boundary layer, where u'w' > 0, the LDA's reported shear stress magnitude will be 

larger than the actual value. The discrepancy is small over the y range represented 

in figure B.l. 

Near the wall, we need to take a different approach to estimating the error due to 

u'w'. It has been found by several researchers (Flack and Johnston (1993), Olcmen 

and Simpson (1994) and Spalart (1989)) that u'w' is largest at y+ « 15. Therefore we 

will limit our discussion to y+ = 15, which should represent the worst-case percentage 

error in the other Reynolds stresses. It can be shown that in any coordinate system 

(with y the wall-normal coordinate) there is an absolute limit on the magnitude of 

u'w'. The reasoning is based on the fact that u'2 and wn are constrained to be positive 

for all orientations of the axes, and may be stated as i?23 < 1, where 

Ri3 = (-n\(—n\ (B.37) \u'2){w'2) 

Looking again at station G, at y+ = 15, we measured un = 5.6uT
2 and wn — 2.5uT

2, 

so equation B.37 says that the maximum realizable u'w' at that point is 3.7uT
2. This 

is the most conservative estimate we can make for u'w'. The largest possible error in 

u'v' and v'w' at station G is 12.3% of that, or 0.46uT
2. However, it is highly unlikely 

that the error will be that large. 

Flack and Johnston (1993) found the near-wall u'w' stress to be largest around 

y+ — 15. We compare our data at station G, y+ = 15, to their "18°" profile at 

y+ = 15. If we estimate that our u'w' has a value of 0.57uT
2, we find that the 

u — w correlation coefficient R2s matches their data for any rotation of axes. Table 

B.2 indicates the stress quantities used to generate this estimate. This is a rough 

estimate for u'w'.  For three-dimensional turbulent boundary layers, near the wall, 
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u'w' increases from the wall as does — u'v', and the estimated u'w' quantity is almost 

as large as our measured ÜV. Therefore, we take estimate conservatively that u'w' « 

—u'v' when looking at the near-wall data. For two-dimensional boundary layers the 

error due to u'w' falls to zero. 

The largest error in the triple products appears to be in u'v'2 and v'2w'. Other 

three-dimensional turbulent boundary layer experiments' triple products (c.f. Flack 

and Johnston (1993), Schwarz and Bradshaw (1992) and Flack (1995) ) show the 

u'v'w' term to be significantly smaller than the u'vn term, but comparable in size to 

the v'2w' term. 

B.6   Changes of angles due to traversing 

Elsewhere we discuss the changes in a40 and a4i due to the change in distance 

between focusing lens and Bragg cell as the system traverses in y. The parameters 

a,b,c, and d will change with distance from the wall, too. Tabulated in table B.3 are 

the amount of change of each of these parameters over a 22 mm range. We see that 

they do not change enough to warrant including this variation in the data reduction 

scheme. 

!'    t 
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Quantity Systematic error 
un +0.035 u'w' 
v12 -none- 
w12 -0.035 vJvP 
u'v' -0.123 u'w' 
v'w' -0.123 u'w' 
uß +0.051 «V2 

unv' 0.122 unw' - 0.035 u'v'w' 
0.245 u'v'w' u'v12 

y/3 -none- 
v'2w' 0.245 u'v'w' 
v'w'2 0.122 uaw' + 0.035 u'v'w' 
w* -0.051 u'w12 

Table B.l. Effect of correlations of u and w on the measured Reynolds stresses and 
triple products. 

Stress Flack & Johnston station G 
u'2 

w12 

u'w' 

6.5txT
2 

3.0«T
2 

Q.7uT
2 

5.6uT
2 

2.5«T
2 

n/a 

Table B.2.  Quantities at y+ = 15, from Flack and Johnston (1993), and from our 
station G. 

Parameter % change 
a 0.001% 
b 3.3% 
c 0.007% 
d 0.47% 

Table B.3. Change in angle parameter over y range of LDA. 
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Figure B.l. Shear stresses at station G measured by the crosswire, and streamwise 
and spanwise shear stresses reduced by 0.123 u'w'. 
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Appendix C 

Error Due to Finite Measuring Volume 

C.l   Analysis 

Any instrument necessarily has finite extent, and we analyze here the effect of a 

measuring volume's finite extent in the y direction on the measured velocities and 

Reynolds stresses. These errors are manifested where there are velocity gradients, so 

in wall-bounded turbulent flows they are highest near the wall. 

We analyze the effect of velocity gradients in one direction, since ^ > ^ for 

boundary layer flows. For this analysis, we consider the center of the measuring 

volume to be at y = i/o- The individual data samples are ix,- = u(yi,ti), while the 

velocities we desire to measure are u = u(y0, U) The probability that any given sample 

occurs at a height y — t/,- is represented by the distribution function 

P(yi)=m(yi-y0) (C.l) 

The function m is everywhere > 0, and it integrates to 1. In addition m is assumed 

to be symmetric about 0, and zero outside the measuring volume. A representative 

such function would be: 

I .  l/d for    \y,,- y0\ < d/2 
m(y<-y°)=la      tor \Si-y<,\>d/2 (C-2) 

where d is the measuring volume diameter. 

C.l.l   Mean velocity error 

We begin the analysis by examining the measured U: 

1   N 

Umeas = T7 X) UM (C'3) 
iV i=X 
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where N is the number of samples. Expressing u,- in a Taylor series expansion about 

V = 2/o, 

m = u(yi, it) = u(y0, U) + (yt- - y0) 
du 

dy 
+ 

yo.*i 

(vi - vor d u 

2        dy2 + .... (C.4) 
yo,U 

Substituting equation C.4 into C.3 we get 

1 
Umeas —   »r 

N N du 
Y>u{y0,ti) + ^2{yi-yo) 
i=i »=i dy 

, f (Vi - yo)2 d2u 
+ ^       2        0y2 

3/0 ,<i       «=1 yo,*i. 

(C.5) 

If there are enough samples, the two random variables t/,- and U are independent, 

and therefore separable. It can be shown that 

N _ ,00 

Y, /(yo, *••) g(yt - yo) = Nf(y0) /     m(j/j - y0) gfa - Vo) dyj (C.6) 

Applying equation C.6 to equation C.5 and recognizing that the first summation 

term in equation C.5 is simply U, 

U„ rr        ÖU 
=   U+JT oy 

+2 dy2 
3/0 N. 

•/—oo 
m(yj - yo) (vi ~ yo) dyj 

r ./—oo 
m(yj - - yo) (yj - - yo)2 dyj (C.7) 

We define the intergrals I0 and I\ as indicated above. It is clear that since we defined 

m to be symmetric about zero, Jo is zero. Therefore the result is: 

ld2U 
Umeas — U T 2dy2 h (C.8) 

C.1.2   Reynolds shear stress 

We expand upon the previous section to describe the error in the Reynolds shear 

stress u'v'. 

The shear stress is evaluated using the following formula: 

  1   N 

^ ^ meas == ~jTf 7 J ^i^i       Umeas 'meas (C.9) 
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Again, we expand the sum via Taylor series: 

*f XV7    *      j.i J9H       ■ (Vi-yo)2 fd2(uv)\ 

(CIO) 

and replace sums with integrals as we did in the previous section, noting that Jo = 0. 

N^UiVi   =   N^UV + -2{W) (C'U) 

= "|>Mly +yV+V + 2¥¥j (oja) 

Now we expand the second term of equation C.9 based on the results of the previous 

section (equation C.8). 

Umea,Vmeaa ={u + ~- h) (y + \^' h) (CIS) 

Substituting equations C.12 and C.13 into equation C.9 we have 

Collecting the terms and recognizing that the RHS contains the definition of u'v', 

/0W       0tf dV\ A     1 W d2V r2 , _, , c. «Vmeos = «V + ^— + 1--J - - j^T^A2 (C.15) 

C.1.3   Normal stresses 

We may simply replace v in equation C.15 with u to find the error in the normal 
stress un. 

u12 Un+[W + 2{^))T-I{w)h (C16) 
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C.1.4   Worst case I\ 

The sample estimate of m in equation C.2 is fairly crude. It represents an equal 

probability across the the measuring volume. This is a worst case scenario, since the 

true distribution will have a higher value in the center of the measuring volume and 

thus will have a lower moment. Let us evaluate the integral h for the distribution 

function m(t/j — i/o) given by equation C.2. 

too fd/2  i (p 
h = J^ m{yj - y0) (y, - y0)

2 dVj = J     ~d
r}d'n = ü ^°'17^ 

Recalling that d has units of length (measuring volume diameter), we see that the 

error estimates do turn out dimensionally correct. We note, also, that it makes sense 

to call terms with I2 small. 

Finally, applying the worst case I\ and scaling velocities on uT and lengths u/uT 

(d+ = d**), we get: 
Umeaa - U     d2U+ d+2 

ur        ~ dy+2 24 

Wmeas-^V     /dW+ . ndU+dV+\ d+2 

(C.18) 

« 
ur2 \ dy+2 dy+ dy+)   12 

7« _^2 

+    Ai+ flt#+ I   19 \   •    ) 

Ur2 

It is clear that the error goes as the square of the diameter of the measuring volume. 

C.2   Application 

In order to evaluate the finite measuring volume errors, we must use either reliable 

data, analytical expressions, or numerical simulations for the velocity profiles. Here 

we choose to use Spalart's (1988) two-dimensional boundary layer simulation. The 

data were numerically differentiated and then used to evaluate equations C.18 to 

C.20. Two probe diameters were considered, d+ = 1 representing the present LDA 

system; d+ = 4 representing more typical LDA systems. Figure C.l shows that mean 

velocity errors are insignificant with the present LDA but can be as large as 6% with 

1t 
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a larger LDA. Similar trends are observed for the normal stress, plotted in figure C.2, 

and the shear stress in figure C.3. Clearly the finite measurement volume makes no 

significant contribution to the uncertainty in the present case but would have been a 

major factor if we had used a conventional LDA. 
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Figure C.l. Error in U due to finite volume size. Scaled on uT. 
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Figure C.3. Error in u'v' due to finite volume size. Scaled on uT. 
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Appendix D 

Data Archives 

All the data presented in this document are available on IBM or Macintosh format 

floppy disk from Professor John K. Eaton at the Mechanical Engineering Department 

of Stanford University. The files include the LDA, hotwire and pressure probe data, 

in ASCII format. The hotwire data include mean velocity and Reynolds stresses. The 

LDA data include the mean velocity, the u'2, v'2, wn, u'v' and v'w' Reynolds stresses, 

and the u13, u'2v', u'v'2, v'3, v'2w', v'w12, and w'3 triple products. Included with the 

data files is a text file README.TXT which describes the contents in further detail. 
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